The spatial receptive field of thalamic inputs to single cortical simple cells revealed by the interaction of visual and electrical stimulation

被引:57
作者
Kara, P [1 ]
Pezaris, JS [1 ]
Yurgenson, S [1 ]
Reid, RC [1 ]
机构
[1] Harvard Univ, Sch Med, Dept Neurobiol, Boston, MA 02115 USA
关键词
D O I
10.1073/pnas.242625499
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electrical stimulation of the thalamus has been widely used to test for the existence of monosynaptic input to cortical neurons, typically with stimulation currents that evoke cortical spikes with high probability. We stimulated the lateral geniculate nucleus (LGN) of the thalamus and recorded monosynaptically evoked spikes from layer 4 neurons in visual cortex. We found that with moderate currents, cortical spikes were evoked with low to moderate probability and their occurrence was modulated by ongoing sensory (visual) input. Furthermore, when repeated at 8-12 Hz, electrical stimulation of the thalamic afferents caused such profound inhibition that cortical spiking activity was suppressed, aside from electrically evoked monosynaptic spikes. Visual input to layer 4 cortical cells between electrical stimuli must therefore have derived exclusively from LGN afferents. We used white-noise visual stimuli to make a 2D map of the receptive field of each cortical simple cell during repetitive electrical stimulation in the LGN. The receptive field of electrically evoked monosynaptic spikes (and thus of the thalamic input alone) was significantly elongated. Its primary subfield was comparable to that of the control receptive field, but secondary (flanking) subfields were weaker. These findings extend previous results from intracellular recordings, but also demonstrate the effectiveness of an extracellular method of measuring subthreshold afferent input to cortex.
引用
收藏
页码:16261 / 16266
页数:6
相关论文
共 27 条
[1]   Rules of connectivity between geniculate cells and simple cells in cat primary visual cortex [J].
Alonso, JM ;
Usrey, WM ;
Reid, RC .
JOURNAL OF NEUROSCIENCE, 2001, 21 (11) :4002-4015
[2]   Dynamic spike threshold reveals a mechanism for synaptic coincidence detection in cortical neurons in vivo [J].
Azouz, R ;
Gray, CM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (14) :8110-8115
[3]   Physiological properties of inhibitory interneurons in cat striate cortex [J].
Azouz, R ;
Gray, CM ;
Nowak, LG ;
McCormick, DA .
CEREBRAL CORTEX, 1997, 7 (06) :534-545
[4]   MECHANISMS OF INHIBITION IN CAT VISUAL-CORTEX [J].
BERMAN, NJ ;
DOUGLAS, RJ ;
MARTIN, KAC ;
WHITTERIDGE, D .
JOURNAL OF PHYSIOLOGY-LONDON, 1991, 440 :697-722
[5]   POSTSYNAPTIC POTENTIALS RECORDED IN NEURONS OF THE CATS LATERAL GENICULATE-NUCLEUS FOLLOWING ELECTRICAL-STIMULATION OF THE OPTIC CHIASM [J].
BLOOMFIELD, SA ;
SHERMAN, SM .
JOURNAL OF NEUROPHYSIOLOGY, 1988, 60 (06) :1924-1945
[6]   Membrane potential and firing rate in cat primary visual cortex [J].
Carandini, M ;
Ferster, D .
JOURNAL OF NEUROSCIENCE, 2000, 20 (01) :470-484
[7]   Strength and orientation tuning of the thalamic input to simple cells revealed by electrically evoked cortical suppression [J].
Chung, S ;
Ferster, D .
NEURON, 1998, 20 (06) :1177-1189
[8]   A FUNCTIONAL MICROCIRCUIT FOR CAT VISUAL-CORTEX [J].
DOUGLAS, RJ ;
MARTIN, KAC .
JOURNAL OF PHYSIOLOGY-LONDON, 1991, 440 :735-769
[9]   RECURRENT EXCITATION IN NEOCORTICAL CIRCUITS [J].
DOUGLAS, RJ ;
KOCH, C ;
MAHOWALD, M ;
MARTIN, KAC ;
SUAREZ, HH .
SCIENCE, 1995, 269 (5226) :981-985
[10]   Neural mechanisms of orientation selectivity in the visual cortex [J].
Ferster, D ;
Miller, KD .
ANNUAL REVIEW OF NEUROSCIENCE, 2000, 23 :441-471