Preferential induction of apoptosis for primary human leukemic stem cells

被引:355
作者
Guzman, ML [1 ]
Swiderski, CF [1 ]
Howard, DS [1 ]
Grimes, BA [1 ]
Rossi, RM [1 ]
Szilvassy, SJ [1 ]
Jordan, CT [1 ]
机构
[1] Univ Kentucky, Med Ctr, Blood & Marrow Transplant Program, Markey Canc Ctr,Div Hematol Oncol, Lexington, KY 40536 USA
关键词
D O I
10.1073/pnas.252462599
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Acute myelogenous leukemia (AML) is typically a disease of stem/ progenitor cell origin. Interestingly, the leukemic stem cell (LSC) shares many characteristics with normal hematopoietic stem cells (HSCs) including the ability to self-renew and a predominantly G(0) cell-cycle status. Thus, although conventional chemotherapy regimens often ablate actively cycling leukemic blast cells, the primitive LSC population is likely to be drug-resistant. Moreover, given the quiescent nature of LSCs, current drugs may not effectively distinguish between malignant stem cells and normal HSCs. Nonetheless, based on recent studies of LSC molecular biology, we hypothesized that certain unique properties of leukemic cells could be exploited to induce apoptosis in the LSC population while sparing normal stem cells. In this report we describe a strategy using treatment of primary AML cells with the proteasome inhibitor carbobenzoxyl-L-leucyl-L-leucyl-L-leucinal (MG-132) and the anthracycline idarubicin. Comparison of normal and leukemic specimens using in vitro culture and in vivo xenotransplantation assays shows that the combination of these two agents induces rapid and extensive apoptosis of the LSC population while leaving normal HSCs viable. Molecular genetic studies using a dominant-negative allele of inhibitor of nuclear factor kappaB (IkappaBalpha) demonstrate that inhibition of nuclear factor kappaB (NF-kappaB) contributes to apoptosis induction. in addition, gene-expression analyses suggest that activation of p53-regulated genes are also involved in LSC apoptosis. Collectively, these findings demonstrate that malignant stem cells can be preferentially targeted for ablation. Further, the data begin to elucidate the molecular mechanisms that underlie LSC-specific apoptosis and suggest new directions for AML therapy.
引用
收藏
页码:16220 / 16225
页数:6
相关论文
共 46 条