The maximal number of regular totally mixed Nash equilibria

被引:38
作者
McKelvey, RD [1 ]
McLennan, A [1 ]
机构
[1] UNIV MINNESOTA, DEPT ECON, MINNEAPOLIS, MN 55455 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/jeth.1996.2214
中图分类号
F [经济];
学科分类号
02 ;
摘要
Let S=Pi(i=1)(n) S-i be the strategy space for a finite n-person game. Let (s(10),...,s(n0)) epsilon S be any strategy n-tuple, and let T-i=S-i-{s(i0)}, i=1,...,n. We show that the maximum number of regular totally mixed Nash equilibria of a game with strategy sets S-i is the number of partitions P={P-1,...,P-n} of boolean OR(r) T-i such that, for each i, \P-i\=\T-t\ and P-i boolean AND T-i=0. The bound is tight, as we give a method for constructing a game with the maximum number of equilibria. (C) 1997 Academic Press.
引用
收藏
页码:411 / 425
页数:15
相关论文
共 5 条
[1]  
Bernshtein DN, 1975, FUNCT ANAL APPL, V9, P183, DOI [DOI 10.1007/BF01075595, 10.1007/BF01075595]
[2]  
CHIN HH, 1973, INT J GAME THEORY, V3, P1
[3]  
Harsanyi J. C., 1973, International Journal of Game Theory, V2, P235, DOI 10.1007/BF01737572
[4]  
Kreps V. L., 1981, International Journal of Game Theory, V10, P125, DOI 10.1007/BF01755957
[5]  
Kushnirenko A., 1975, Usp. Mat. Nauk, V30, P266