An underlap field-effect transistor for electrical detection of influenza

被引:64
作者
Lee, Kwang-Won [1 ]
Choi, Sung-Jin [1 ]
Ahn, Jae-Hyuk [1 ]
Moon, Dong-Il [1 ]
Park, Tae Jung [2 ,3 ]
Lee, Sang Yup [2 ,3 ,4 ,5 ]
Choi, Yang-Kyu [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Elect Engn & Comp Sci, Div Elect Engn, Taejon 305701, South Korea
[2] Korea Adv Inst Sci & Technol, BioProc Engn Res Ctr, Ctr Syst & Synthet Biotechnol, Taejon 305701, South Korea
[3] Korea Adv Inst Sci & Technol, Inst BioCentury, Taejon 305701, South Korea
[4] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Dept Biol Sci, Taejon 305701, South Korea
[5] Korea Adv Inst Sci & Technol, Bioinformat Res Ctr, Taejon 305701, South Korea
关键词
biosensors; CMOS integrated circuits; field effect transistors; microorganisms; molecular biophysics; proteins; NANOWIRE NANOSENSORS;
D O I
10.1063/1.3291617
中图分类号
O59 [应用物理学];
学科分类号
摘要
An underlap channel-embedded field-effect transistor (FET) is proposed for label-free biomolecule detection. Specifically, silica binding protein fused with avian influenza (AI) surface antigen and avian influenza antibody (anti-AI) were designed as a receptor molecule and a target material, respectively. The drain current was significantly decreased after the binding of negatively charged anti-AI on the underlap channel. A set of control experiments supports that only the biomolecules on the underlap channel effectively modulate the drain current. With the merits of a simple fabrication process, complementary metal-oxide-semiconductor compatibility, and enhanced sensitivity, the underlap FET could be a promising candidate for a chip-based biosensor.
引用
收藏
页数:3
相关论文
共 13 条
[1]   Field-effect detection of chemical species with hybrid organic/inorganic transistors [J].
Bartic, C ;
Campitelli, A ;
Borghs, S .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :475-477
[2]   Thirty years of ISFETOLOGY - What happened in the past 30 years and what may happen in the next 30 years [J].
Bergveld, P .
SENSORS AND ACTUATORS B-CHEMICAL, 2003, 88 (01) :1-20
[3]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[4]   Nanogap Field-Effect Transistor Biosensors for Electrical Detection of Avian Influenza [J].
Gu, Bonsang ;
Park, Tae Jung ;
Ahn, Jae-Hyuk ;
Huang, Xing-Jiu ;
Lee, Sang Yup ;
Choi, Yang-Kyu .
SMALL, 2009, 5 (21) :2407-2412
[5]   Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors [J].
Hahm, J ;
Lieber, CM .
NANO LETTERS, 2004, 4 (01) :51-54
[6]   The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures [J].
Holmberg, A ;
Blomstergren, A ;
Nord, O ;
Lukacs, M ;
Lundeberg, J ;
Uhlén, M .
ELECTROPHORESIS, 2005, 26 (03) :501-510
[7]   A dielectric-modulated field-effect transistor for biosensing [J].
Im, Hyungsoon ;
Huang, Xing-Jiu ;
Gu, Bonsang ;
Choi, Yang-Kyu .
NATURE NANOTECHNOLOGY, 2007, 2 (07) :430-434
[8]   Biosensor based on magnetostrictive microcantilever - art. no. 073507 [J].
Li, SQ ;
Orona, L ;
Li, ZM ;
Cheng, ZY .
APPLIED PHYSICS LETTERS, 2006, 88 (07)
[9]   A porous silicon-based optical interferometric biosensor [J].
Lin, VSY ;
Motesharei, K ;
Dancil, KPS ;
Sailor, MJ ;
Ghadiri, MR .
SCIENCE, 1997, 278 (5339) :840-843
[10]   Conductance of a molecular junction [J].
Reed, MA ;
Zhou, C ;
Muller, CJ ;
Burgin, TP ;
Tour, JM .
SCIENCE, 1997, 278 (5336) :252-254