A physical and functional interaction between yeast Pol4 and Dnl4-Lif1 links DNA synthesis and ligation in nonhomologous end joining

被引:91
作者
Tseng, HM
Tomkinson, AE
机构
[1] Univ Texas, Hlth Sci Ctr, Dept Mol Med, San Antonio, TX 78245 USA
[2] Univ Texas, Hlth Sci Ctr, Inst Biotechnol, San Antonio, TX 78245 USA
关键词
D O I
10.1074/jbc.M206861200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Genetic studies have implicated the Saccharomyces cerevisiae POL4 gene product in the repair of DNA double-strand breaks by nonhomologous end joining. Here we show that Pol4 preferentially catalyzes DNA synthesis on small gaps formed by the alignment of linear duplex DNA molecules with complementary ends, a DNA substrate specificity that is compatible with its predicted role in the repair of DNA double-strand breaks. Pol4 also interacts directly with the Dnl4 subunit of the Dnl4-Lif1 complex via its N-terminal BRCT domain. This interaction stimulates the DNA synthesis activity of Pol4 and, to a lesser extent, the DNA joining activity of Dnl4-Lif1. Notably, the joining of DNA substrates that require the combined action of Pol4 and Dnl4-Lif1 is much more efficient than the joining of similar DNA substrates that require only ligation. Thus, the physical and functional interactions between Pol4 and Dnl4-Lif1 provide a molecular mechanism for both the recruitment of Pol4 to in vivo DNA double-strand breaks and the coupling of the gap filling DNA synthesis and DNA joining reactions that complete the microhomology-mediated pathway of nonhomologous end joining.
引用
收藏
页码:45630 / 45637
页数:8
相关论文
共 56 条
  • [1] Two novel human and mouse DNA polymerases of the polX family
    Aoufouchi, S
    Flatter, E
    Dahan, A
    Faili, A
    Bertocci, B
    Storck, S
    Delbos, F
    Cocea, L
    Gupta, N
    Weill, JC
    Reynaud, CA
    [J]. NUCLEIC ACIDS RESEARCH, 2000, 28 (18) : 3684 - 3693
  • [2] STABLE AND SPECIFIC ASSOCIATION BETWEEN THE YEAST RECOMBINATION AND DNA-REPAIR PROTEIN-RAD1 AND PROTEIN-RAD10 INVITRO
    BARDWELL, L
    COOPER, AJ
    FRIEDBERG, EC
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (07) : 3041 - 3049
  • [3] Identification of a Saccharomyces cerevisiae Ku80 homologue: Roles in DNA double strand break rejoining and in telomeric maintenance
    Boulton, SJ
    Jackson, SP
    [J]. NUCLEIC ACIDS RESEARCH, 1996, 24 (23) : 4639 - 4648
  • [4] Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways
    Boulton, SJ
    Jackson, SP
    [J]. EMBO JOURNAL, 1996, 15 (18) : 5093 - 5103
  • [5] Components of the Ku-dependent non-homologous end-joining pathway are involved in telomeric length maintenance and telomeric silencing
    Boulton, SJ
    Jackson, SP
    [J]. EMBO JOURNAL, 1998, 17 (06) : 1819 - 1828
  • [6] BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
  • [7] Bressan DA, 1999, MOL CELL BIOL, V19, P7681
  • [8] AN INTERACTION BETWEEN THE MAMMALIAN DNA-REPAIR PROTEIN XRCC1 AND DNA LIGASE-III
    CALDECOTT, KW
    MCKEOWN, CK
    TUCKER, JD
    LJUNGQUIST, S
    THOMPSON, LH
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (01) : 68 - 76
  • [9] From BRCA1 to RAP1: A widespread BRCT module closely associated with DNA repair
    Callebaut, I
    Mornon, JP
    [J]. FEBS LETTERS, 1997, 400 (01): : 25 - 30
  • [10] The hMre11/hRad50 protein complex and Nijmegen breakage syndrome: Linkage of double-strand break repair to the cellular DNA damage response
    Carney, JP
    Maser, RS
    Olivares, H
    Davis, EM
    Le Beau, M
    Yates, JR
    Hays, L
    Morgan, WF
    Petrini, JHJ
    [J]. CELL, 1998, 93 (03) : 477 - 486