Direct astrocytic contacts regulate local maturation of dendritic spines

被引:199
作者
Nishida, Hideko
Okabe, Shigeo
机构
[1] Tokyo Med & Dent Univ, Sch Med, Dept Cell Biol, Bunkyo Ku, Tokyo 1138519, Japan
[2] Tokyo Med & Dent Univ, COE Program Brain Integrat & Disorders, Tokyo 1138519, Japan
[3] Japan Sci & Technol Agcy, Solut Oriented Res Sci & Technol, Kawaguchi 3320012, Japan
关键词
dendritic spine; astrocyte; organotypic slice; two-photon microscopy; motility; synapse;
D O I
10.1523/JNEUROSCI.4466-06.2007
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Astrocytes contribute on both development and function of synapses, but it remains unclear whether direct astrocytic contacts regulate development of individual synapses. Two-photon time-lapse imaging of astrocytic and dendritic protrusive activity revealed the correlation of astrocytic contacts with both lifetime and morphological maturation of dendritic protrusions. Astrocytic motility was essential in maturation of spines, because its suppression by manipulating Rac1-dependent signaling in astrocytes resulted in induction of longer, filopodia-like dendritic protrusions. Manipulation of ephrin/Eph-dependent neuron-astrocyte signaling suggested involvement of this signaling pathway in astrocyte-dependent stabilization of newly generated dendritic protrusions. Our data support a model in which astrocytic protrusive activity in development acts as a key local regulator for stabilization of individual dendritic protrusions and subsequent maturation into spines.
引用
收藏
页码:331 / 340
页数:10
相关论文
共 40 条
[1]   Control of synaptic strength by glial TNFα [J].
Beattie, EC ;
Stellwagen, D ;
Morishita, W ;
Bresnahan, JC ;
Ha, BK ;
Von Zastrow, M ;
Beattie, MS ;
Malenka, RC .
SCIENCE, 2002, 295 (5563) :2282-2285
[2]   Ballistic labeling and dynamic imaging of astrocytes in orcranotypic hippocampal slice cultures [J].
Benediktsson, AM ;
Schachtele, SJ ;
Green, SH ;
Dailey, ME .
JOURNAL OF NEUROSCIENCE METHODS, 2005, 141 (01) :41-53
[3]  
Blondel O, 2000, J NEUROSCI, V20, P8012
[4]   Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development [J].
Bushong, EA ;
Marton, ME ;
Ellisman, MH .
INTERNATIONAL JOURNAL OF DEVELOPMENTAL NEUROSCIENCE, 2004, 22 (02) :73-86
[5]   Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains [J].
Bushong, EA ;
Martone, ME ;
Jones, YZ ;
Ellisman, MH .
JOURNAL OF NEUROSCIENCE, 2002, 22 (01) :183-192
[6]   Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis [J].
Christopherson, KS ;
Ullian, EM ;
Stokes, CCA ;
Mullowney, CE ;
Hell, JW ;
Agah, A ;
Lawler, J ;
Mosher, DF ;
Bornstein, P ;
Barres, BA .
CELL, 2005, 120 (03) :421-433
[7]   THE EXCITATORY NEUROTRANSMITTER GLUTAMATE CAUSES FILOPODIA FORMATION IN CULTURED HIPPOCAMPAL ASTROCYTES [J].
CORNELLBELL, AH ;
THOMAS, PG ;
SMITH, SJ .
GLIA, 1990, 3 (05) :322-334
[8]  
Dailey ME, 1996, J NEUROSCI, V16, P2983
[9]   Structural basis for developmentally regulated changes in cadherin function at synapses [J].
Elste, AM ;
Benson, DL .
JOURNAL OF COMPARATIVE NEUROLOGY, 2006, 495 (03) :324-335
[10]   Cdc42 regulates GSK-3β and adenomatous polyposis coli to control cell polarity [J].
Etienne-Manneville, S ;
Hall, A .
NATURE, 2003, 421 (6924) :753-756