Tightness of random knotting

被引:123
作者
Katritch, V
Olson, WK
Vologodskii, A
Dubochet, J
Stasiak, A
机构
[1] Univ Lausanne, Lab Anal Ultrastruct, CH-1015 Lausanne, Switzerland
[2] NYU, Dept Chem, New York, NY 10003 USA
[3] Rutgers State Univ, Dept Chem, New Brunswick, NJ 08903 USA
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 05期
关键词
D O I
10.1103/PhysRevE.61.5545
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Long polymers in solution frequently adopt knotted configurations. To understand the physical properties of knotted polymers, it is important to find out whether the knots formed at thermodynamic equilibrium are spread over the whole polymer chain or rather are localized as tight knots. We present here a method to analyze the knottedness of short linear portions of simulated random chains. Using this method, we observe that knot-determining domains are usually very tight, so that, for example, the preferred size of the trefoil-determining portions of knotted polymer chains corresponds to just seven freely jointed segments.
引用
收藏
页码:5545 / 5549
页数:5
相关论文
共 34 条
[1]  
Adams C. C., 1994, KNOT BOOK
[2]   Topological invariants of knots and links [J].
Alexander, J. W. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1928, 30 (1-4) :275-306
[3]  
[Anonymous], 1994, J KNOT THEOR RAMIF
[4]  
de Gennes P.G., 1979, SCALING CONCEPTS POL
[5]  
Delbruck M, 1962, MATH PROBLEMS BIOL S, V14, P55
[6]  
Diao Y., 1994, J KNOT THEOR RAMIF, V3, P419, DOI DOI 10.1142/S0218216594000307
[7]  
Flory P J., PRINCIPLES POLYM CHE
[8]   CHEMICAL TOPOLOGY [J].
FRISCH, HL ;
WASSERMAN, E .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1961, 83 (18) :3789-&
[9]   Flory-type theory of a knotted ring polymer [J].
Grosberg, AY ;
Feigel, A ;
Rabin, Y .
PHYSICAL REVIEW E, 1996, 54 (06) :6618-6622
[10]   Monte Carlo results for projected self-avoiding polygons: a two-dimensional model for knotted polymers [J].
Guitter, E ;
Orlandini, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (08) :1359-1385