Numerical approximations of the 10-moment Gaussian closure

被引:31
作者
Berthon, Christophe [1 ]
机构
[1] Univ Bordeaux 1, CNRS, UMR 5466, MAB, F-33400 Talence, France
关键词
hyperbolic system of conservation laws; Gaussian moment closure; relaxation scheme; discrete entropy inequalities;
D O I
10.1090/S0025-5718-06-01860-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a numerical scheme to approximate the weak solutions of the 10-moment Gaussian closure. The moment Gaussian closure for gas dynamics is governed by a conservative hyperbolic system supplemented by entropy inequalities whose solutions satisfy positiveness of density and tensorial pressure. We consider a Suliciu-type relaxation numerical scheme to approximate the solutions. These methods are proved to satisfy all the expected positiveness properties and all the discrete entropy inequalities. The scheme is illustrated by several numerical experiments.
引用
收藏
页码:1809 / 1831
页数:23
相关论文
共 26 条
[1]  
Aregba-Driollet D., 1996, APPL ANAL, V61, P163
[2]   A relaxation method for two-phase flow models with hydrodynamic closure law [J].
Baudin, M ;
Berthon, C ;
Coquel, F ;
Masson, R ;
Tran, QH .
NUMERISCHE MATHEMATIK, 2005, 99 (03) :411-440
[3]   A relaxation scheme for the approximation of the pressureless Euler equations [J].
Berthon, C ;
Breuss, M ;
Titeux, MO .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2006, 22 (02) :484-505
[4]   Numerical approximation of a degenerated non-conservative multifluid model: relaxation scheme [J].
Berthon, C ;
Braconnier, B ;
Nkonga, B .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2005, 48 (01) :85-90
[5]   Entropy inequalities for a relaxation scheme. [J].
Berthon, C .
COMPTES RENDUS MATHEMATIQUE, 2005, 340 (01) :63-68
[6]  
BERTHON C, UNPUB
[7]   Entropy satisfying flux vector splittings and kinetic BGK models [J].
Bouchut, F .
NUMERISCHE MATHEMATIK, 2003, 94 (04) :623-672
[8]  
CHALONS C, NAVIERSTOKES EQUATIO
[9]   HYPERBOLIC CONSERVATION-LAWS WITH STIFF RELAXATION TERMS AND ENTROPY [J].
CHEN, GQ ;
LEVERMORE, CD ;
LIU, TP .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (06) :787-830
[10]   Relaxation of energy and approximate Riemann solvers for general pressure laws in fluid dynamics [J].
Coquel, F ;
Perthame, B .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 35 (06) :2223-2249