Some APX-completeness results for cubic graphs

被引:246
作者
Alimonti, P [1 ]
Kann, V
机构
[1] Univ Roma La Sapienza, Dipartimento Informat & Sistemist, Rome, Italy
[2] Royal Inst Technol, Stockholm, Sweden
关键词
computational complexity; NP-hard optimization problems; approximation; APX-completeness; cubic graphs;
D O I
10.1016/S0304-3975(98)00158-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Four fundamental graph problems, Minimum vertex cover, Maximum independent set, Minimum dominating set and Maximum cut, are shown to be APX-complete even for cubic graphs. Therefore, unless P = NP, these problems do not admit any polynomial time approximation scheme on input graphs of degree bounded by three. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:123 / 134
页数:12
相关论文
共 25 条
[1]   THE COMPLEXITY AND APPROXIMABILITY OF FINDING MAXIMUM FEASIBLE SUBSYSTEMS OF LINEAR RELATIONS [J].
AMALDI, E ;
KANN, V .
THEORETICAL COMPUTER SCIENCE, 1995, 147 (1-2) :181-210
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theoryof NP-Completeness
[3]  
Arora S., 1992, Proceedings 33rd Annual Symposium on Foundations of Computer Science (Cat. No.92CH3188-0), P2, DOI 10.1109/SFCS.1992.267824
[4]  
AUSIELLO G, 1998, IN PRESS APPROXIMATE
[5]  
Bellare M, 1995, AN S FDN CO, P422, DOI 10.1109/SFCS.1995.492573
[6]  
BERMAN P, 1994, PROCEEDINGS OF THE FIFTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P365
[7]  
BERMAN P, 1995, LECT NOTES COMPUTER, V955
[8]  
CRESCENZI F, 1995, SIRR9502 U ROM SAP D
[9]   COMPLETENESS IN APPROXIMATION CLASSES [J].
CRESCENZI, P ;
PANCONESI, A .
INFORMATION AND COMPUTATION, 1991, 93 (02) :241-262
[10]  
Crescenzi P, 1995, LECT NOTES COMPUT SC, V959, P539, DOI 10.1007/BFb0030875