Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5

被引:36
作者
Barclay, JW [1 ]
Aldea, M [1 ]
Craig, TJ [1 ]
Morgan, A [1 ]
Burgoyne, RD [1 ]
机构
[1] Univ Liverpool, Physiol Lab, Liverpool L69 3BX, Merseyside, England
关键词
D O I
10.1074/jbc.M406670200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Cyclin-dependent kinase 5 (Cdk5) is a serine/threonine kinase involved in synaptogenesis and brain development, and its enzymatic activity is essential for slow forms of synaptic vesicle endocytosis. Recent work also has implicated Cdk5 in exocytosis and synaptic plasticity. Pharmacological inhibition of Cdk5 modifies secretion in neuroendocrine cells, synaptosomes, and brain slices; however, the specific mechanisms involved remain unclear. Here we demonstrate that dominant-negative inhibition of Cdk5 increases quantal size and broadens the kinetics of individual exocytotic events measured by amperometry in adrenal chromaffin cells. Conversely, Cdk5 overexpression narrows the kinetics of fusion, consistent with an increase in the extent of kiss-and-run exocytosis. Cdk5 inhibition also increases the total charge and current of catecholamine released during the amperometric foot, representing a modification of the conductance of the initial fusion pore connecting the granule and plasma membrane. We suggest that these effects are not attributable to an alteration in catecholamine content of secretory granules and therefore represent an effect on the fusion mechanism itself. Finally, mutational silencing of the Cdk5 phosphorylation site in Munc18, an essential protein of the late stages of vesicle fusion, has identical effects on amperometric spikes as dominant-negative Cdk5 but does not affect the amperometric feet. Cells expressing Munc18 T574A have increased quantal size and broader kinetics of fusion. These results suggest that Cdk5 could, in part, control the kinetics of exocytosis through phosphorylation of Munc18, but Cdk5 also must have Munc18-independent effects that modify fusion pore conductance, which may underlie a role of Cdk5 in synaptic plasticity.
引用
收藏
页码:41495 / 41503
页数:9
相关论文
共 71 条
[1]   Hyperphosphorylated tan and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5 [J].
Ahlijanian, MK ;
Barrezueta, NX ;
Williams, RD ;
Jakowski, A ;
Kowsz, KP ;
McCarthy, S ;
Coskran, T ;
Carlo, A ;
Seymour, PA ;
Burkhardt, JE ;
Nelson, RB ;
McNeish, JD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (06) :2910-2915
[2]   The exocytotic event in chromaffin cells revealed by patch amperometry [J].
Albillos, A ;
Dernick, G ;
Horstmann, H ;
Almers, W ;
deToledo, GA ;
Lindau, M .
NATURE, 1997, 389 (6650) :509-512
[3]   High calcium concentrations shift the mode of exocytosis to the kiss-and-run mechanism [J].
Alés, E ;
Tabares, L ;
Poyato, JM ;
Valero, V ;
Lindau, M ;
de Toledo, GA .
NATURE CELL BIOLOGY, 1999, 1 (01) :40-44
[4]  
ALVAREZ DT, 1993, NATURE, V363, P554, DOI DOI 10.1038/363554A0
[5]   Single synaptic vesicles fusing transiently and successively without loss of identity [J].
Aravanis, AM ;
Pyle, JL ;
Tsien, RW .
NATURE, 2003, 423 (6940) :643-647
[6]   Role for calcium in heat shock-mediated synaptic thermoprotection in Drosophila larvae [J].
Barclay, JW ;
Robertson, RM .
JOURNAL OF NEUROBIOLOGY, 2003, 56 (04) :360-371
[7]   Phosphorylation of Munc18 by protein kinase C regulates the kinetics of exocytosis [J].
Barclay, JW ;
Craig, TJ ;
Fisher, RJ ;
Ciufo, LF ;
Evans, GJO ;
Morgan, A ;
Burgoyne, RD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2003, 278 (12) :10538-10545
[8]   Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission [J].
Beffert, U ;
Weeber, EJ ;
Morfini, G ;
Ko, J ;
Brady, ST ;
Tsai, LH ;
Sweatt, JD ;
Herz, J .
JOURNAL OF NEUROSCIENCE, 2004, 24 (08) :1897-1906
[9]   Splitting the quantum: regulation of quantal release during vesicle fusion [J].
Burgoyne, RD ;
Barclay, JW .
TRENDS IN NEUROSCIENCES, 2002, 25 (04) :176-178
[10]  
BURGOYNE RD, 1992, NEUROMETHODS, V20, P433