The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalysts for DMFC

被引:85
作者
Lu, Yuhao [1 ]
Reddy, Ramana G. [1 ]
机构
[1] Univ Alabama, Dept Met & Mat Engn, Tuscaloosa, AL 35487 USA
关键词
oxygen reduction; methanol resistance; electrocatalyst; DMFC; cobalt phthalocyanine;
D O I
10.1016/j.electacta.2006.09.009
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical behavior of cobalt phthalocyanine/platinum as methanol-resistant oxygen-reduction electrocatalyst for DMFC was investigated. Platinum was chemically deposited on the carbon-supported cobalt phthalocyanine (CoPc), and then it was heat-treated in high purity nitrogen at 300 degrees C, 635 degrees C and 980 degrees C. In order to evaluate the electrocatalytic behavior of CoPc-Pt/C, the PtCo/C and Pt/C as reference catalysts were employed. TGA, XRD, EDAX, XPS and electrochemical experiments were used to study the thermal stability, crystal structure, physical characterization and electrochemical behavior of these catalysts. These catalysts exhibited similar electrocatalytic activity for oxygen reaction in 0.5 M H2SO4 solution. In methanol tolerance experiments, Pt/C, PtCo/C and CoPc-Pt/C heated at 980 degrees C were active for the methanol oxidation reaction (MOR). The presence of Co did not improve resistance to methanol poisoning. However, the CoPc-Pt/C after 300 degrees C or 635 degrees C heat-treatment demonstrated significant inactivity for MOR, hence they have a good ability to resist methanol poisoning. The current study indicated that the macrocyclic structure of phthalocyanine is the most important factor to improve the methanol tolerance of CoPc-Pt/C as the oxygen-reduction reaction (ORR) electrocatalyst. The CoPc-Pt based catalyst should be a good alternation for oxygen electro-reduction reaction in DMFC. Published by Elsevier Ltd.
引用
收藏
页码:2562 / 2569
页数:8
相关论文
共 37 条
[1]   Activation energies for oxygen reduction on platinum alloys: Theory and experiment [J].
Anderson, AB ;
Roques, J ;
Mukerjee, S ;
Murthi, VS ;
Markovic, NM ;
Stamenkovic, V .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (03) :1198-1203
[2]   Platinum-macrocycle co-catalysts for the electrochemical oxidation of methanol [J].
Bett, JS ;
Kunz, HR ;
Aldykiewicz, AJ ;
Fenton, JM ;
Bailey, WF ;
McGrath, DV .
ELECTROCHIMICA ACTA, 1998, 43 (24) :3645-3655
[3]   Water-neutral micro direct-methanol fuel cell (DMFC) for portable applications [J].
Blum, A ;
Duvdevani, T ;
Philosoph, M ;
Rudoy, N ;
Peled, E .
JOURNAL OF POWER SOURCES, 2003, 117 (1-2) :22-25
[4]   Electrocatalytic oxidation of formic acid by Pt/Co nanoparticles [J].
Chi, N ;
Chan, KY ;
Phillips, DL .
CATALYSIS LETTERS, 2001, 71 (1-2) :21-26
[5]  
COTE R, 1998, J NEW MAT ELECTR SYS, V1, P7
[6]   Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black: Physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells [J].
Faubert, G ;
Lalande, G ;
Cote, R ;
Guay, D ;
Dodelet, JP ;
Weng, LT ;
Bertrand, P ;
Denes, G .
ELECTROCHIMICA ACTA, 1996, 41 (10) :1689-1701
[7]  
FISCHER C, 1995, J APPL ELECTROCHEM, V25, P1004
[8]   Improved Pt alloy catalysts for fuel cells [J].
Freund, A ;
Lang, J ;
Lehmann, T ;
Starz, KA .
CATALYSIS TODAY, 1996, 27 (1-2) :279-283
[9]   Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs [J].
Gasteiger, HA ;
Kocha, SS ;
Sompalli, B ;
Wagner, FT .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2005, 56 (1-2) :9-35
[10]   POROUS CARBON ANODES FOR THE DIRECT METHANOL FUEL-CELL .1. THE ROLE OF THE REDUCTION METHOD FOR CARBON SUPPORTED PLATINUM-ELECTRODES [J].
GOODENOUGH, JB ;
HAMNETT, A ;
KENNEDY, BJ ;
MANOHARAN, R ;
WEEKS, SA .
ELECTROCHIMICA ACTA, 1990, 35 (01) :199-207