Control of the replicative life span of human fibroblasts by p16 and the polycomb protein Bmi-1

被引:333
作者
Itahana, K
Zou, Y
Itahana, Y
Martinez, JL
Beausejour, C
Jacobs, JJL
van Lohuizen, M
Band, V
Campisi, J
Dimri, GP
机构
[1] Tufts Univ New England Med Ctr, Dept Radiat Oncol, Div Radiat & Canc Biol, Boston, MA 02111 USA
[2] Lawrence Berkeley Lab, Div Life Sci, Berkeley, CA 94720 USA
[3] Calif Pacific Med Ctr, San Francisco, CA 94115 USA
[4] Netherlands Canc Inst, Div Mol Genet, NL-1066 CX Amsterdam, Netherlands
关键词
D O I
10.1128/MCB.23.1.389-401.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The polycomb protein Bmi-1 represses the INK4a locus, which encodes the tumor suppressors p16 and p14(ARF). Here we report that Bmi-1 is downregulated when WI-38 human fibroblasts undergo replicative senescence, but not quiescence, and extends replicative life span when overexpressed. Life span extension by Bmi-1 required the pRb, but not p53, tumor suppressor protein. Deletion analysis showed that the RING finger and helix-turn-helix domains of Bmi-1 were required for life span extension and suppression of p16. Furthermore, a RING finger deletion mutant exhibited dominant negative activity, inducing p16 and premature senescence. Interestingly, presenescent cultures of some, but not all, human fibroblasts contained growth-arrested cells expressing high levels of p16 and apparently arrested by a p53- and telomere-independent mechanism. Bmi-1 selectively extended the life span of these cultures. Low O-2 concentrations had no effect on p16 levels or life span extension by Bmi-1 but reduced expression of the p53 target, p21. We propose that some human fibroblast strains are more sensitive to stress-induced senescence and have both p16-dependent and p53/telomere-dependent pathways of senescence. Our data suggest that Bmi-1 extends the replicative life span of human fibroblasts by suppressing the p16-dependent senescence pathway.
引用
收藏
页码:389 / 401
页数:13
相关论文
共 66 条
  • [1] Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts
    Alcorta, DA
    Xiong, Y
    Phelps, D
    Hannon, G
    Beach, D
    Barrett, JC
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (24) : 13742 - 13747
  • [2] Identification of Bmi1-interacting proteins as constituents of a multimeric mammalian Polycomb complex
    Alkema, MJ
    Bronk, M
    Verhoeven, E
    Otte, A
    vantVeer, LT
    Berns, A
    vanLohuizen, M
    [J]. GENES & DEVELOPMENT, 1997, 11 (02) : 226 - 240
  • [3] INCREASED ACTIVITY OF P53 IN SENESCING FIBROBLASTS
    ATADJA, P
    WONG, H
    GARKAVTSEV, I
    VEILLETTE, C
    RIABOWOL, K
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (18) : 8348 - 8352
  • [4] BALIN AK, 1984, J EXP MED, V160, P152, DOI 10.1084/jem.160.1.152
  • [5] BOND JA, 1994, ONCOGENE, V9, P1885
  • [6] Bond JA, 1999, MOL CELL BIOL, V19, P3103
  • [7] Cellular senescence as a tumor-suppressor mechanism
    Campisi, J
    [J]. TRENDS IN CELL BIOLOGY, 2001, 11 (11) : S27 - S31
  • [8] Replicative senescence: An old lives' tale?
    Campisi, J
    [J]. CELL, 1996, 84 (04) : 497 - 500
  • [9] Chen QM, 2000, ANN NY ACAD SCI, V908, P111
  • [10] p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis
    Chin, L
    Artandi, SE
    Shen, Q
    Tam, A
    Lee, SL
    Gottlieb, GJ
    Greider, CW
    DePinho, RA
    [J]. CELL, 1999, 97 (04) : 527 - 538