On fractional kinetic equations

被引:111
作者
Saxena, RK [1 ]
Mathai, AM
Haubold, HJ
机构
[1] Jai Narain Vyas Univ, Dept Math & Stat, Jodhpur 342001, Rajasthan, India
[2] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[3] UN, Off Outer Space Affairs, A-1400 Vienna, Austria
关键词
Soliton; Fractional Calculus; Fractional Differential Equation; Fractional Integration; High Transcendental Function;
D O I
10.1023/A:1021175108964
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The subject of this paper is to derive the solution of generalized fractional kinetic equations. The results are obtained in a compact form containing the Mittag-Leffler function, which naturally occurs whenever one is dealing with fractional integral equations. The results derived in this paper provide an extension of a result given by Haubold and Mathai in a recent paper (Haubold and Mathai, 2000).
引用
收藏
页码:281 / 287
页数:7
相关论文
共 19 条
[1]  
AGARWAL RP, 1953, CR HEBD ACAD SCI, V236, P2031
[2]  
Erdelyi A., 1954, TABLES INTEGRAL TRAN, VI
[3]  
Erdelyi A, 1955, HIGHER TRANSCENDENTA, V3
[4]  
Erdelyi A., 1953, Higher Transcendental Functions, California Institute of Technology. Bateman Manuscript Project, V1
[5]   The fractional kinetic equation and thermonuclear functions [J].
Haubold, HJ ;
Mathai, AM .
ASTROPHYSICS AND SPACE SCIENCE, 2000, 273 (1-4) :53-63
[6]  
Hilfer R., 2000, Applications of Fractional Calculus in Physics, V35
[7]  
HUMBERT P, 1953, CR HEBD ACAD SCI, V236, P1467
[8]  
Humbert P., 1953, B SCI MATH, V77, P180
[9]  
Lang K. R., 1999, ASTROPHYSICAL FORMUL, V1
[10]  
Lang K. R., 1999, ASTROPHYSICAL FORMUL, VII