Rapid prototyping of 3D DNA-origami shapes with caDNAno

被引:870
作者
Douglas, Shawn M. [1 ,2 ,3 ,4 ]
Marblestone, Adam H. [1 ,5 ]
Teerapittayanon, Surat [3 ]
Vazquez, Alejandro [3 ]
Church, George M. [3 ,4 ]
Shih, William M. [1 ,2 ,4 ]
机构
[1] Harvard Univ, Sch Med, Dana Farber Canc Inst, Dept Canc Biol, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Biol Chem & Mol Pharmacol, Boston, MA 02115 USA
[3] Harvard Univ, Sch Med, Dept Genet, Boston, MA 02115 USA
[4] Harvard Univ, Wyss Inst Biologically Inspired Engn, Cambridge, MA 02138 USA
[5] Yale Univ, Dept Phys, New Haven, CT 06520 USA
基金
美国国家卫生研究院;
关键词
DESIGN; TILES;
D O I
10.1093/nar/gkp436
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
DNA nanotechnology exploits the programmable specificity afforded by base-pairing to produce self-assembling macromolecular objects of custom shape. For building megadalton-scale DNA nanostructures, a long 'scaffold' strand can be employed to template the assembly of hundreds of oligonucleotide 'staple' strands into a planar antiparallel array of cross-linked helices. We recently adapted this 'scaffolded DNA origami' method to producing 3D shapes formed as pleated layers of double helices constrained to a honeycomb lattice. However, completing the required design steps can be cumbersome and time-consuming. Here we present caDNAno, an open-source software package with a graphical user interface that aids in the design of DNA sequences for folding 3D honeycomb-pleated shapes A series of rectangular-block motifs were designed, assembled, and analyzed to identify a well-behaved motif that could serve as a building block for future studies. The use of caDNAno significantly reduces the effort required to design 3D DNA-origami structures. The software is available at http://cadnano.org/, along with example designs and video tutorials demonstrating their construction. The source code is released under the MIT license.
引用
收藏
页码:5001 / 5006
页数:6
相关论文
共 19 条
[1]   DNA origami design of dolphin-shaped structures with flexible tails [J].
Andersen, Ebbe S. ;
Dong, Mingdong ;
Nielsen, Morten M. ;
Jahn, Kasper ;
Lind-Thomsen, Allan ;
Mamdouh, Wael ;
Gothelf, Kurt V. ;
Besenbacher, Flemming ;
Kjems, Jorgen .
ACS NANO, 2008, 2 (06) :1213-1218
[2]  
[Anonymous], 2012, Molecular Cloning: A Laboratory Manual
[3]   An information-bearing seed for nucleating algorithmic self-assembly [J].
Barish, Robert D. ;
Schulman, Rebecca ;
Rothemund, Paul W. K. ;
Winfree, Erik .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (15) :6054-6059
[4]   Architecture with GIDEON, a program for design in structural DNA nanotechnology [J].
Birac, Jeffrey J. ;
Sherman, William B. ;
Kopatsch, Jens ;
Constantinou, Pamela E. ;
Seeman, Nadrian C. .
JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2006, 25 (04) :470-480
[5]   SYNTHESIS FROM DNA OF A MOLECULE WITH THE CONNECTIVITY OF A CUBE [J].
CHEN, JH ;
SEEMAN, NC .
NATURE, 1991, 350 (6319) :631-633
[6]   DNA-nanotube-induced alignment of membrane proteins for NMR structure determination [J].
Douglas, Shawn M. ;
Chou, James J. ;
Shih, William M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2007, 104 (16) :6644-6648
[7]   Self-assembly of DNA into nanoscale three-dimensional shapes [J].
Douglas, Shawn M. ;
Dietz, Hendrik ;
Liedl, Tim ;
Hoegberg, Bjoern ;
Graf, Franziska ;
Shih, William M. .
NATURE, 2009, 459 (7245) :414-418
[8]   DNA DOUBLE-CROSSOVER MOLECULES [J].
FU, TJ ;
SEEMAN, NC .
BIOCHEMISTRY, 1993, 32 (13) :3211-3220
[9]   Toward reliable algorithmic self-assembly of DNA tiles: A fixed-width cellular automaton pattern [J].
Fujibayashi, Kenichi ;
Hariadi, Rizal ;
Park, Sung Ha ;
Winfree, Erik ;
Murata, Satoshi .
NANO LETTERS, 2008, 8 (07) :1791-1797
[10]   Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra [J].
He, Yu ;
Ye, Tao ;
Su, Min ;
Zhang, Chuan ;
Ribbe, Alexander E. ;
Jiang, Wen ;
Mao, Chengde .
NATURE, 2008, 452 (7184) :198-U41