Stem-loop binding protein accumulates during oocyte maturation and is not cell-cycle-regulated in the early mouse embryo

被引:24
作者
Allard, P
Champigny, MJ
Skoggard, S
Erkmann, JA
Whitfield, ML
Marzluff, WF
Clarke, HJ [1 ]
机构
[1] McGill Univ, Dept Obstet & Gynecol, Montreal, PQ H3A 1A1, Canada
[2] McGill Univ, Dept Biol, Montreal, PQ H3A 1A1, Canada
[3] McGill Univ, Dept Med, Montreal, PQ H3A 1A1, Canada
[4] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
[5] Univ N Carolina, Program Mol Biol & Biotechnol, Chapel Hill, NC 27599 USA
基金
加拿大健康研究院;
关键词
SLBP; histone mRNA; mouse; oocyte; embryo; translational control; cell cycle;
D O I
10.1242/jcs.00132
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The stem-loop binding protein (SLBP) binds to the 3' end of histone mRNA and participates in 3'-processing of the newly synthesized transcripts, which protects them from degradation, and probably also promotes their translation. In proliferating cells, translation of SLBP mRNA begins at G1/S and the protein is degraded following DNA replication. These post-transcriptional mechanisms closely couple SLBP expression to S-phase of the cell cycle, and play a key role in restricting synthesis of replication-dependent histones to S-phase. In contrast to somatic cells, replication-dependent histone mRNAs accumulate and are translated independently of DNA replication in oocytes and early embryos. We report here that SLBP expression and activity also differ in mouse oocytes and early embryos compared with somatic cells. SLBP is present in oocytes that are arrested at prophase of G2/M, where it is concentrated in the nucleus. Upon entry into M-phase of meiotic maturation, SLBP begins to accumulate rapidly, reaching a very high level in mature oocytes arrested at metaphase II. Following fertilization, SLBP remains abundant in the nucleus and the cytoplasm throughout the first cell cycle, including both G1 and G2 phases. It declines during the second and third cell cycles, reaching a relatively low level by the late 4-cell stage. SLBP can bind the histone mRNA-stem-loop at all stages of the cell cycle in oocytes and early embryos, and it is the only stem-loop binding activity detectable in these cells. We also report that SLBP becomes phosphorylated rapidly following entry into M-phase of meiotic maturation through a mechanism that is sensitive to roscovitine, an inhibitor of cyclindependent kinases. SLBP is rapidly dephosphorylated following fertilization or parthenogenetic activation, and becomes newly phosphorylated at M-phase of mitosis. Phosphorylation does not affect its stem-loop binding activity. These results establish that, in contrast to Xenopus, mouse oocytes and embryos contain a single SLBP. Expression of SLBP is uncoupled from S-phase in oocytes and early embryos, which indicates that the mechanisms that impose cell-cycle-regulated expression of SLBP in somatic cells do not operate in oocytes or during the first embryonic cell cycle. This distinctive pattern of SLBP expression may be required for accumulation of histone proteins required for sperm chromatin remodelling and assembly of newly synthesized embryonic DNA into chromatin.
引用
收藏
页码:4577 / 4586
页数:10
相关论文
共 57 条
[1]   The stem-loop binding protein (SLBP1) is present in coiled bodies of the Xenopus germinal vesicle [J].
Abbott, J ;
Marzluff, WF ;
Gall, JG .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (02) :487-499
[2]  
[Anonymous], 1988, Antibodies: A Laboratory Manual
[3]   Translational control of cyclin B1 mRNA during meiotic maturation: Coordinated repression and cytoplasmic polyadenylation [J].
Barkoff, AF ;
Dickson, KS ;
Gray, NK ;
Wickens, N .
DEVELOPMENTAL BIOLOGY, 2000, 220 (01) :97-109
[4]  
BOLTON VN, 1984, J EMBRYOL EXP MORPH, V79, P139
[5]  
CHOI T, 1991, DEVELOPMENT, V113, P789
[6]  
CLARKE HJ, 1992, DEVELOPMENT, V115, P791
[7]  
Clarke HJ, 1997, J CELL SCI, V110, P477
[8]   c-mos and cdc2 cooperate in the translational activation of fibroblast growth factor receptor-1 during Xenopus oocyte maturation [J].
Culp, PA ;
Musci, TJ .
MOLECULAR BIOLOGY OF THE CELL, 1999, 10 (11) :3567-3581
[9]   A specific inhibitor of p34cdc2/cyclin B suppresses fertilization-induced calcium oscillations in mouse eggs [J].
Deng, MQ ;
Sheldon, SS .
BIOLOGY OF REPRODUCTION, 2000, 62 (04) :873-878
[10]  
Dominski Z, 1999, MOL CELL BIOL, V19, P3561