System identification of mechanical structures by a high-order multivariate autoregressive model

被引:49
作者
He, X [1 ]
DeRoeck, G [1 ]
机构
[1] KATHOLIEKE UNIV LEUVEN,DEPT CIVIL ENGN,B-3001 HEVERLEE,BELGIUM
关键词
D O I
10.1016/S0045-7949(96)00126-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents an algorithm for a time series analysis-the high-order multivariate autoregressive model M-AR(P). The theory of the model and the application in modal parameter identification of structures excited by natural random forces is described. A water transmission tower is taken as a real example to illustrate the application procedure of this algorithm. Good results in natural frequencies, damping ratios, mode shapes, as well as power spectra and coherence functions identified by this model prove the advantages and usefulness of the algorithm. (C) 1997 Civil-Comp Ltd and Elsevier Science Ltd.
引用
收藏
页码:341 / 351
页数:11
相关论文
共 9 条
[1]  
[Anonymous], 1975, THESIS STANFORD U ST
[2]  
CHATFIELD C, 1989, ANAL TIME SERIES
[3]  
DEROECK G, 1993, EURODYN 1993, P811
[4]   MAXIMUM LIKELIHOOD ESTIMATION OF STRUCTURAL PARAMETERS FROM RANDOM VIBRATION DATA [J].
GERSCH, W ;
NIELSEN, NN ;
AKAIKE, H .
JOURNAL OF SOUND AND VIBRATION, 1973, 31 (03) :295-308
[5]  
KAISER JF, 1966, DIGITAL FILTERS SYST
[6]   MODAL-ANALYSIS FOR RANDOMLY EXCITED STRUCTURAL SYSTEMS WITH UNMEASURED INPUT [J].
LEE, AC ;
CHEN, JH .
JOURNAL OF SOUND AND VIBRATION, 1989, 132 (01) :101-113
[7]   A NEW AUTOREGRESSIVE SPECTRUM ANALYSIS ALGORITHM [J].
MARPLE, L .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1980, 28 (04) :441-454
[8]  
RABINER LR, 1976, THEORY APPLICATION D
[9]  
SHIBATA R, 1976, BIOMETRIKA, V63, P117