Neurogenesis may relate to some but not all types of hippocampal-dependent learning

被引:654
作者
Shors, TJ
Townsend, DA
Zhao, MR
Kozorovitskiy, Y
Gould, E
机构
[1] Rutgers State Univ, Ctr Collaborat Neurosci, Dept Psychol, Piscataway, NJ 08854 USA
[2] Princeton Univ, Dept Psychol, Princeton, NJ 08544 USA
关键词
spatial maze; fear; trace memory; context; dentate gyrus;
D O I
10.1002/hipo.10103
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The hippocampal formation generates new neurons throughout adulthood. Recent studies indicate that these cells possess the morphology and physiological properties of more established neurons. However, the function of adult generated neurons is still a matter of debate. We previously demonstrated that certain forms of associative learning can enhance the survival of new neurons and a reduction in neurogenesis coincides with impaired learning of the hippocampal-dependent task of trace eyeblink conditioning. Using the toxin methylazoxymethanol acetate (MAM) for proliferating cells, we tested whether reduction of neurogenesis affected learning and performance associated with different hippocampal dependent tasks: spatial navigation learning in a Morris water maze, fear responses to context and an explicit cue after training with a trace fear paradigm. We also examined exploratory behavior in an elevated plus maze. Rats were injected with MAM (7 mg/kg) or saline for 14 days, concurrent with BrdU, to label new neurons on days 10, 12, and 14. After treatment, groups of rats were tested in the various tasks. A significant reduction in new neurons in the adult hippocampus was associated with impaired performance in some tasks, but not with others. Specifically, treatment with the antimitotic agent reduced the amount of fear acquired after exposure to a trace fear conditioning paradigm but did not affect contextual fear conditioning or spatial navigation learning in the Morris water maze. Nor did MAM treatment affect exploration in the elevated plus maze. These results combined with previous ones suggest that neurogenesis may be associated with the formation of some but not all types of hippocampal-dependent memories. (C) 2002 Wiley-Liss, Inc.
引用
收藏
页码:578 / 584
页数:7
相关论文
共 51 条
[1]   AUTORADIOGRAPHIC AND HISTOLOGICAL EVIDENCE OF POSTNATAL HIPPOCAMPAL NEUROGENESIS IN RATS [J].
ALTMAN, J ;
DAS, GD .
JOURNAL OF COMPARATIVE NEUROLOGY, 1965, 124 (03) :319-&
[2]   SEASONAL RECRUITMENT OF HIPPOCAMPAL-NEURONS IN ADULT FREE-RANGING BLACK-CAPPED CHICKADEES [J].
BARNEA, A ;
NOTTEBOHM, F .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (23) :11217-11221
[3]   The role of the hippocampus in trace conditioning: Temporal discontinuity or task difficulty? [J].
Beylin, AV ;
Gandhi, CC ;
Wood, GE ;
Talk, AC ;
Matzel, LD ;
Shors, TJ .
NEUROBIOLOGY OF LEARNING AND MEMORY, 2001, 76 (03) :447-461
[4]   ON THE NUMBER OF NEURONS IN THE DENTATE GYRUS OF THE RAT [J].
BOSS, BD ;
PETERSON, GM ;
COWAN, WM .
BRAIN RESEARCH, 1985, 338 (01) :144-150
[5]   ADULT NEUROGENESIS IS REGULATED BY ADRENAL-STEROIDS IN THE DENTATE GYRUS [J].
CAMERON, HA ;
GOULD, E .
NEUROSCIENCE, 1994, 61 (02) :203-209
[6]   Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus [J].
Cameron, HA ;
McKay, RDG .
JOURNAL OF COMPARATIVE NEUROLOGY, 2001, 435 (04) :406-417
[7]   DIFFERENTIATION OF NEWLY BORN NEURONS AND GLIA IN THE DENTATE GYRUS OF THE ADULT-RAT [J].
CAMERON, HA ;
WOOLLEY, CS ;
MCEWEN, BS ;
GOULD, E .
NEUROSCIENCE, 1993, 56 (02) :337-344
[8]   Opiates inhibit neurogenesis in the adult rat hippocampus [J].
Eisch, AJ ;
Barrot, M ;
Schad, CA ;
Self, DW ;
Nestler, EJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (13) :7579-7584
[9]   Neurogenesis in the adult human hippocampus [J].
Eriksson, PS ;
Perfilieva, E ;
Björk-Eriksson, T ;
Alborn, AM ;
Nordborg, C ;
Peterson, DA ;
Gage, FH .
NATURE MEDICINE, 1998, 4 (11) :1313-1317
[10]   Spatial memory, habituation, and reactions to spatial and nonspatial changes in rats with selective lesions of the hippocampus, the entorhinal cortex or the subiculum [J].
Galani, R ;
Weiss, I ;
Cassel, JC ;
Kelche, C .
BEHAVIOURAL BRAIN RESEARCH, 1998, 96 (1-2) :1-12