Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion

被引:91
作者
Rockey, DD
Grosenbach, D
Hruby, DE
Peacock, MG
Heinzen, RA
Hackstadt, T
机构
[1] OREGON STATE UNIV,DEPT MICROBIOL,CORVALLIS,OR 97331
[2] UNIV WYOMING,DEPT MOL BIOL,LARAMIE,WY 82071
关键词
D O I
10.1046/j.1365-2958.1997.3371700.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Chlamydiae are obligate intracellular bacteria that replicate within a non-acidified vacuole called an inclusion. Chlamydia psittaci (strain GPIC) produces a 39 kDa protein (IncA) that is localized to the inclusion membrane. While IncA is present as a single 39 kDa species in purified reticulate bodies, two additional higher M-r forms are found in C. psittaci-infected cells. This finding suggested that IncA may be post-translationally modified in the host cell. Here we present evidence that IncA is a serine/threonine phosphoprotein that is phosphorylated by host cell enzymes. This conclusion is supported by the following experimental findings: (i) treatment of infected cells with inhibitors of host cell phosphatases or kinases altered the electrophoretic migration pattern of IncA; (ii) treatment with calf intestinal alkaline phosphatase eliminated the multiple-banding pattern of IncA, leaving only the protein band with the lowest relative molecular weight; and (iii) radioimmunoprecipitation of lysates of [P-32]-orthophosphate-labelled infected HeLa cells with anti-lncA antisera demonstrated that the two highest M, IncA bands were phosphorylated. A vaccinia-virus recombinant expressing incA was used to determine if HeLa cells can phosphorylate IncA in the absence of a chlamydial background. IncA in lysates of these cells migrated identically to that seen in C. psittaci-infected cells, indicating the host cell was responsible for the phosphorylation of the protein. Microinjection of fluorescently labelled anti-lncA antibodies into C. psittaci-infected HeLa cells resulted in immunostaining of the outer face of the inclusion membrane. Collectively, these results demonstrate that IncA is phosphorylated by the host cell, and regions of IncA are exposed at the cytoplasmic face of the inclusion.
引用
收藏
页码:217 / 228
页数:12
相关论文
共 31 条
[1]  
AKIYAMA T, 1987, J BIOL CHEM, V262, P5592
[2]   THE TOXOPLASMA-GONDII RHOPTRY PROTEIN ROP-2 IS INSERTED INTO THE PARASITOPHOROUS VACUOLE MEMBRANE, SURROUNDING THE INTRACELLULAR PARASITE, AND IS EXPOSED TO THE HOST-CELL CYTOPLASM [J].
BECKERS, CJM ;
DUBREMETZ, JF ;
MERCEREAUPUIJALON, O ;
JOINER, KA .
JOURNAL OF CELL BIOLOGY, 1994, 127 (04) :947-961
[3]   SNARES AND THE SPECIFICITY OF TRANSPORT VESICLE TARGETING [J].
BENNETT, MK .
CURRENT OPINION IN CELL BIOLOGY, 1995, 7 (04) :581-586
[4]   CLONING OF A CDNA-ENCODING THE DENSE GRANULE PROTEIN GRA3 FROM TOXOPLASMA-GONDII [J].
BERMUDES, D ;
DUBREMETZ, JF ;
ACHBAROU, A ;
JOINER, KA .
MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 1994, 68 (02) :247-257
[5]   SELECTION OF RECOMBINANT VACCINIA VIRUSES ON THE BASIS OF PLAQUE-FORMATION [J].
BLASCO, R ;
MOSS, B .
GENE, 1995, 158 (02) :157-162
[6]   EXPRESSION AND PHOSPHORYLATION OF THE LISTERIA-MONOCYTOGENES ACTA PROTEIN IN MAMMALIAN-CELLS [J].
BRUNDAGE, RA ;
SMITH, GA ;
CAMILLI, A ;
THERIOT, JA ;
PORTNOY, DA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (24) :11890-11894
[7]   PURIFICATION AND PARTIAL CHARACTERIZATION OF THE MAJOR OUTER-MEMBRANE PROTEIN OF CHLAMYDIA-TRACHOMATIS [J].
CALDWELL, HD ;
KROMHOUT, J ;
SCHACHTER, J .
INFECTION AND IMMUNITY, 1981, 31 (03) :1161-1176
[8]   LIPID-METABOLISM IN CHLAMYDIA TRACHOMATIS-INFECTED CELLS - DIRECTED TRAFFICKING OF GOLGI-DERIVED SPHINGOLIPIDS TO THE CHLAMYDIAL INCLUSION [J].
HACKSTADT, T ;
SCIDMORE, MA ;
ROCKEY, DD .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (11) :4877-4881
[9]   Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane [J].
Hackstadt, T ;
Rockey, DD ;
Heinzen, RA ;
Scidmore, MA .
EMBO JOURNAL, 1996, 15 (05) :964-977
[10]   The Chlamydia trachomatis parasitophorous vacuolar membrane is not passively permeable to low-molecular-weight compounds [J].
Heinzen, RA ;
Hackstadt, T .
INFECTION AND IMMUNITY, 1997, 65 (03) :1088-1094