Exact nonparametric tests of orthogonality and random walk in the presence of a drift parameter

被引:39
作者
Campbell, B [1 ]
Dufour, JM [1 ]
机构
[1] CONCORDIA UNIV, MONTREAL, PQ, CANADA
关键词
D O I
10.2307/2527412
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper, finite-sample nonparametric tests of conditional independence and random walk are extended to allow for an unknown drift parameter. The tests proposed are based on simultaneous inference methods and remain exact in the presence of general forms of feedback, nonnormality and heteroskedasticity. Further, in two simulation studies we confirm that the nonparametric procedures are reliable, and find that they display power comparable or superior to that of conventional tests.
引用
收藏
页码:151 / 173
页数:23
相关论文
共 32 条
[1]  
[Anonymous], HDB MONETARY EC
[2]  
BANERJEE A, 1987, ECON LETT, V24, P27, DOI 10.1016/0165-1765(87)90176-5
[3]   ORTHOGONALITY TESTS WITH DE-TRENDED DATA - INTERPRETING MONTE-CARLO RESULTS USING NAGAR EXPANSIONS [J].
BANERJEE, A ;
DOLADO, J ;
GALBRAITH, JW .
ECONOMICS LETTERS, 1990, 32 (01) :19-24
[4]   TESTS OF THE LIFE CYCLE-PERMANENT INCOME HYPOTHESIS IN THE PRESENCE OF RANDOM-WALKS - ASYMPTOTIC THEORY AND SMALL-SAMPLE INTERPRETATIONS [J].
BANERJEE, A ;
DOLADO, J .
OXFORD ECONOMIC PAPERS-NEW SERIES, 1988, 40 (04) :610-633
[5]  
BURRIDGE P, 1995, UNPUB LIMIT DISTRIBU
[6]   OVER-REJECTIONS IN RATIONAL-EXPECTATIONS MODELS - A NONPARAMETRIC APPROACH TO THE MANKIW-SHAPIRO PROBLEM [J].
CAMPBELL, B ;
DUFOUR, JM .
ECONOMICS LETTERS, 1991, 35 (03) :285-290
[7]   FEDERAL-BUDGET PROJECTIONS - A NONPARAMETRIC ASSESSMENT OF BIAS AND EFFICIENCY [J].
CAMPBELL, B ;
GHYSELS, E .
REVIEW OF ECONOMICS AND STATISTICS, 1995, 77 (01) :17-31
[8]   EXACT NONPARAMETRIC ORTHOGONALITY AND RANDOM-WALK TESTS [J].
CAMPBELL, B ;
DUFOUR, JM .
REVIEW OF ECONOMICS AND STATISTICS, 1995, 77 (01) :1-16
[9]  
Dufour J.-M., 1981, Journal of Time Series Analysis, V2, P117, DOI 10.1111/j.1467-9892.1981.tb00317.x
[10]   NONUNIFORM BOUNDS FOR NONPARAMETRIC T-TESTS [J].
DUFOUR, JM ;
HALLIN, M .
ECONOMETRIC THEORY, 1991, 7 (02) :253-263