Cancer biology: mechanism of antitumour action of vorinostat (suberoylanilide hydroxamic acid), a novel histone deacetylase inhibitor

被引:176
作者
Richon, V. M. [1 ]
机构
[1] Merck Res Labs, Dept Canc Biol & Therapeut, Boston, MA 02115 USA
关键词
histone deacetylase; vorinostat; chromatin;
D O I
10.1038/sj.bjc.6603463
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Histone deacetylase (HDAC) inhibitors represent a potential new class of antitumor agents. Vorinostat (suberoylanilide hydroxamic acid or SAHA) is a potent inhibitor of HDAC activity and has undergone initial evaluation in several Phase I and II clinical trials. HDACs are enzymes that catalyse the removal of the acetyl moiety from the lysine residues of proteins, including the core nucleosomal histones. Together with histone acetyltransferases (HATs), HDACs regulate the level of protein acetylation. Alterations in both HAT and HDAC activity have been reported to occur in cancer. HAT activity has been found to be disrupted by translocation, amplification, overexpression or mutation in a variety of cancers, including those of haematological or epithelial origin. HDACs have been found to be overexpressed or associated with oncogenic transcription factors. Vorinostat induces growth arrest, differentiation or apoptosis in a variety of transformed cells. The antiproliferative effects of vorinostat are believed to be due to drug-induced accumulation of acetylated proteins, including the core nucleosomal histones and other proteins (e. g., BCL6, p53 and Hsp90). Phase I and II trials have been conducted for the oral formulations of vorinostat, and results show that vorinostat inhibits its target enzyme (HDAC) in peripheral mononuclear cells and tumour tissue at doses that are well tolerated. Antitumour activity has been seen in patients with both haematological and solid tumours.
引用
收藏
页码:S2 / S6
页数:5
相关论文
共 43 条
[1]   Synergistic induction of mitochondrial damage and apoptosis in human leukemia cells by flavopiridol and the histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA) [J].
Almenara, J ;
Rosato, R ;
Grant, S .
LEUKEMIA, 2002, 16 (07) :1331-1343
[2]   Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90 - A novel basis for antileukemia activity of histone deacetylase inhibitors [J].
Bali, P ;
Pranpat, M ;
Bradner, J ;
Balasis, M ;
Fiskus, W ;
Guo, F ;
Rocha, K ;
Kumaraswamy, S ;
Boyapalle, S ;
Atadja, P ;
Seto, E ;
Bhalla, K .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (29) :26729-26734
[3]   Acetylation inactivates the transcriptional repressor BCL6 [J].
Bereshchenko, OR ;
Gu, W ;
Dalla-Favera, R .
NATURE GENETICS, 2002, 32 (04) :606-613
[4]  
Butler LM, 2000, CANCER RES, V60, P5165
[5]   Modulation of radiation response by histone deacetylase inhibition [J].
Chinnaiyan, P ;
Vallabhaneni, G ;
Armstrong, E ;
Huang, SM ;
Harari, PM .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2005, 62 (01) :223-229
[6]  
Cohen LA, 1999, ANTICANCER RES, V19, P4999
[7]  
Cohen LA, 2002, ANTICANCER RES, V22, P1497
[8]  
Desai D, 2003, ANTICANCER RES, V23, P499
[9]  
Duvic M, 2005, J CLIN ONCOL, V23, p577S
[10]   Suberoylanilide hydroxamic acid (SAHA) has potent anti-glioma properties in vitro, ex vivo and in vivo [J].
Eyüpoglu, IY ;
Hahnen, E ;
Buslei, R ;
Siebzehnrübl, FA ;
Savaskan, NE ;
Lüders, M ;
Tränkle, C ;
Wick, W ;
Weller, M ;
Fahlbusch, R ;
Blümcke, I .
JOURNAL OF NEUROCHEMISTRY, 2005, 93 (04) :992-999