A genomic approach to identify regulatory nodes in the transcriptional network of systemic acquired resistance in plants

被引:570
作者
Wang, Dong [1 ]
Amornsiripanitch, Nita [1 ]
Dong, Xinnian [1 ]
机构
[1] Duke Univ, Dev Cell & Mol Biol Grp, Dept Biol, Durham, NC USA
关键词
D O I
10.1371/journal.ppat.0020123
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Many biological processes are controlled by intricate networks of transcriptional regulators. With the development of microarray technology, transcriptional changes can be examined at the whole-genome level. However, such analysis often lacks information on the hierarchical relationship between components of a given system. Systemic acquired resistance (SAR) is an inducible plant defense response involving a cascade of transcriptional events induced by salicylic acid through the transcription cofactor NPR1. To identify additional regulatory nodes in the SAR network, we performed microarray analysis on Arabidopsis plants expressing the NPR1-GR (glucocorticoid receptor) fusion protein. Since nuclear translocation of NPR1-GR requires dexamethasone, we were able to control NPR1-dependent transcription and identify direct transcriptional targets of NPR1. We show that NPR1 directly upregulates the expression of eight WRKY transcription factor genes. This large family of 74 transcription factors has been implicated in various defense responses, but no specific WRKY factor has been placed in the SAR network. Identification of NPR1-regulated WRKY factors allowed us to perform in-depth genetic analysis on a small number of WRKY factors and test well-defined phenotypes of single and double mutants associated with NPR1. Among these WRKY factors we found both positive and negative regulators of SAR. This genomics-directed approach unambiguously positioned five WRKY factors in the complex transcriptional regulatory network of SAR. Our work not only discovered new transcription regulatory components in the signaling network of SAR but also demonstrated that functional studies of large gene families have to take into consideration sequence similarity as well as the expression patterns of the candidates.
引用
收藏
页码:1042 / 1050
页数:9
相关论文
共 29 条
[1]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[2]   A Bayesian framework for the analysis of microarray expression data: regularized t-test and statistical inferences of gene changes [J].
Baldi, P ;
Long, AD .
BIOINFORMATICS, 2001, 17 (06) :509-519
[3]   A MUTATION IN ARABIDOPSIS THAT LEADS TO CONSTITUTIVE EXPRESSION OF SYSTEMIC ACQUIRED-RESISTANCE [J].
BOWLING, SA ;
GUO, A ;
CAO, H ;
GORDON, AS ;
KLESSIG, DF ;
DONG, XI .
PLANT CELL, 1994, 6 (12) :1845-1857
[4]   Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor [J].
Chen, CH ;
Chen, ZX .
PLANT PHYSIOLOGY, 2002, 129 (02) :706-716
[5]   Isolation and characterization of two pathogen- and salicylic acid-induced genes encoding WRKY DNA-binding proteins from tobacco [J].
Chen, CH ;
Chen, ZX .
PLANT MOLECULAR BIOLOGY, 2000, 42 (02) :387-396
[6]   Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset [J].
Choe, SE ;
Boutros, M ;
Michelson, AM ;
Church, GM ;
Halfon, MS .
GENOME BIOLOGY, 2005, 6 (02)
[7]   ARABIDOPSIS SIGNAL-TRANSDUCTION MUTANT DEFECTIVE IN CHEMICALLY AND BIOLOGICALLY INDUCED DISEASE RESISTANCE [J].
DELANEY, TP ;
FRIEDRICH, L ;
RYALS, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (14) :6602-6606
[8]   DAVID: Database for annotation, visualization, and integrated discovery [J].
Dennis, G ;
Sherman, BT ;
Hosack, DA ;
Yang, J ;
Gao, W ;
Lane, HC ;
Lempicki, RA .
GENOME BIOLOGY, 2003, 4 (09)
[9]   Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response [J].
Dong, JX ;
Chen, CH ;
Chen, ZX .
PLANT MOLECULAR BIOLOGY, 2003, 51 (01) :21-37
[10]   In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis [J].
Fan, WH ;
Dong, XN .
PLANT CELL, 2002, 14 (06) :1377-1389