Bacteriophage T4 RNA ligase 2 (gp24.1) exemplifies a family of RNA ligases found in all phylogenetic domains

被引:125
作者
Ho, CK [1 ]
Shuman, S [1 ]
机构
[1] Sloan Kettering Inst, Program Mol Biol, New York, NY 10021 USA
关键词
D O I
10.1073/pnas.192184699
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
RNA ligases participate in repair, splicing, and editing pathways that either reseal broken RNAs or alter their primary structure. Bacteriophage T4 RNA ligase (gp63) is the best-studied member of this class of enzymes, which includes yeast tRNA ligase and trypanosome RNA-editing ligases. Here, we identified another RNA ligase from the bacterial domain-a second RNA ligase (Rnl2) encoded by phage T4. Purified Rnl2 (gp24.1) catalyzes intramolecular and intermolecular RNA strand joining through ligase-adenylate and RNA-adenylate intermediates. Mutational analysis identifies amino acids required for the ligase-adenylation or phosphodiester synthesis steps of the ligation reaction. The catalytic residues of Rnl2 are located within nucleotidyl transferase motifs I, IV, and V that are conserved in DNA ligases and RNA capping enzymes. Rnl2 has scant amino acid similarity to T4 gp63. Rather, Rnl2 exemplifies a distinct ligase family, defined by variant motifs, that includes the trypanosome-editing ligases and a group of putative RNA ligases encoded by eukaryotic viruses (baculoviruses and an entomopoxvirus) and many species of archaea. These findings have implications for the evolution of covalent nucleotidyl transferases and virus-host dynamics based on RNA restriction and repair.
引用
收藏
页码:12709 / 12714
页数:6
相关论文
共 39 条
[1]   tRNA splicing [J].
Abelson, J ;
Trotta, CR ;
Li, H .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (21) :12685-12688
[2]   BACTERIOPHAGE-T4 ANTICODON NUCLEASE, POLYNUCLEOTIDE KINASE AND RNA LIGASE REPROCESS THE HOST LYSINE TRANSFER-RNA [J].
AMITSUR, M ;
LEVITZ, R ;
KAUFMANN, G .
EMBO JOURNAL, 1987, 6 (08) :2499-2503
[3]   INVITRO RECONSTITUTION OF ANTICODON NUCLEASE FROM COMPONENTS ENCODED BY PHAGE-T4 AND ESCHERICHIA-COLI CTR5X [J].
AMITSUR, M ;
MORAD, I ;
KAUFMANN, G .
EMBO JOURNAL, 1989, 8 (08) :2411-2415
[4]   THE COMPLETE DNA-SEQUENCE OF AUTOGRAPHA-CALIFORNICA NUCLEAR POLYHEDROSIS-VIRUS [J].
AYRES, MD ;
HOWARD, SC ;
KUZIO, J ;
LOPEZFERBER, M ;
POSSEE, RD .
VIROLOGY, 1994, 202 (02) :586-605
[5]   Complete genomic sequence of the Amsacta moorei entomopoxvirus:: Analysis and comparison with other poxviruses [J].
Bawden, AL ;
Glassberg, KJ ;
Diggans, J ;
Shaw, R ;
Farmerie, W ;
Moyer, RW .
VIROLOGY, 2000, 274 (01) :120-139
[6]  
CRANSTON JW, 1974, J BIOL CHEM, V249, P7447
[7]   The pnk/pnl gene (ORF 86) of Autographa californica nucleopolyhedrovirus is a non-essential, immediate early gene [J].
Durantel, D ;
Croizier, L ;
Ayres, MD ;
Croizier, G ;
Possee, RD ;
López-Ferber, M .
JOURNAL OF GENERAL VIROLOGY, 1998, 79 :629-637
[8]   DELETION OF THE ESSENTIAL GENE 24 FROM THE BACTERIOPHAGE-T4 GENOME [J].
ENGMAN, HW ;
KREUZER, KN .
GENE, 1993, 123 (01) :69-74
[9]   Mechanism of non-spliceosomal mRNA splicing in the unfolded protein response pathway [J].
Gonzalez, TN ;
Sidrauski, C ;
Dörfler, S ;
Walter, P .
EMBO JOURNAL, 1999, 18 (11) :3119-3132
[10]   X-ray crystallography reveals a large conformational change during guanyl transfer by mRNA capping enzymes [J].
Hakansson, K ;
Doherty, AJ ;
Shuman, S ;
Wigley, DB .
CELL, 1997, 89 (04) :545-553