Asymptotic methods in the axisymmetric dynamic non-stationary contact problem for an elastic half-space

被引:4
作者
Aleksandrov, VM
Zelentsov, VB
机构
[1] Moscow, Rostov-on-Don
来源
PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS | 2000年 / 64卷 / 01期
关键词
D O I
10.1016/S0021-8928(00)00034-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Asymptotic methods for solving the axisymmetric dynamic non-stationary contact problem for short and long values of the time of indentation of a rigid punch into an elastic half-space are developed. Using Laplace integral transformations (with respect to time) and Hankel integral transformations (with respect to the coordinate) the contact problem is reduced to solving an integral equation in the unknown Laplace transformant of the contact stresses under the punch. The zeroth term of the asymptotic solution of the integral equation for large values of the Laplace parameter (short times) is constructed using a Special approximation in the complex plane of the symbol of the integral-equation kernel. The asymptotic solution of the integral equation for small values of the Laplace parameter (long times) is constructed in powers of this parameter. The solution of the contact problem is obtained using an inverse Laplace transformation, applied to the solutions of the integral equation. (C) 2000 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:133 / 145
页数:13
相关论文
共 13 条
[1]  
ALEKSANDROV VM, 1972, PRIKL MAT MEKH, V36, P494
[2]  
Aleksandrov VM, 1993, PRIKL MAT MEKH, V57, P102
[3]  
Aleksandrov VM, 1986, PROBLEMS CONTINUUM M
[4]  
[Anonymous], NONCLASSICAL 3 DIMEN
[5]  
Kostrov B.V., 1964, IZV AKAD NAUK SSSR M, V4, P54
[6]  
Krein S.G., 1964, FUNCTIONAL ANAL
[7]  
LOBYSEV VL, 1971, IZV AKAD NAUK SSSR M, V4, P103
[8]  
Lur'ye A I, 1955, 3 DIMENSIONAL PROBLE
[9]  
NOBLE B, 1958, METHOD BASED WIENERH
[10]  
PORUCHIKOV VB, 1966, VESTNIK MOS GOS U MM, V6, P114