Analysis of a binding difference between the two dsRNA-binding domains in TRBP reveals the modular function of a KR-helix motif

被引:48
作者
Daviet, L
Erard, M
Dorin, D
Duarte, M
Vaquero, C
Gatignol, A
机构
[1] Inst Cochin Genet Mol, INSERM, U332, F-75014 Paris, France
[2] Inst Cochin Genet Mol, INSERM, U529, F-75014 Paris, France
[3] CNRS, Inst Pharmacol & Biol Struct, Toulouse, France
[4] Hop La Pitie Salpetriere, INSERM, U511, Paris, France
来源
EUROPEAN JOURNAL OF BIOCHEMISTRY | 2000年 / 267卷 / 08期
关键词
dsRNA-binding domain (dsRBD); peptide motif; RNA-protein interaction; TAR; TAR RNA-binding protein (TRBP);
D O I
10.1046/j.1432-1327.2000.01256.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Double-stranded RNA-binding proteins constitute a large family with conserved domains called dsRBDs. One of these, TRBP, a protein that binds HIV-1 TAR RNA, has two dsRBDs (dsRBD1 and dsRBD2), as indicated by computer sequence homology. However, a 24-amino-acid deletion in dsRBD2 completely abolishes RNA binding, suggesting that only one domain is functional. To analyse further the similarities and differences between these domains, we expressed them independently and measured their RNA-binding affinities. We found that dsRBD2 has a dissociation constant of 5.9 x 10(-8) m, whereas dsRBD1 binds RNA minimally. Binding analysis of 25-amino-acid peptides in TRBP and other related proteins showed that only one peptide in TRBP and one in Drosophila Staufen bind TAR and a GC-rich TAR-mimic RNA. Whereas a 25-mer peptide derived from dsRBD2 (TR5) bound TAR RNA, the equivalent peptide in dsRBD1 (TR6) did not. Molecular modelling indicates that this difference can mainly be ascribed to the replacement of Arg by His residues. Mutational analyses in homologous peptides also show the importance of residues K2 and L3. Analysis of 15-amino-acid peptides revealed that, in addition to TR13 (from TRBP dsRBD2), one peptide in S6 kinase has RNA-binding properties. On the basis of previous and the present results, we can define, in a broader context than that of TRBP, the main outlines of a modular KR-helix motif required for binding TAR. This structural motif exists independently from the dsRBD context and therefore has a modular function.
引用
收藏
页码:2419 / 2431
页数:13
相关论文
共 43 条
[1]   Structure of HIV-1 TAB RNA in the absence of ligands reveals a novel conformation of the trinucleotide bulge [J].
AboulEla, F ;
Karn, J ;
Varani, G .
NUCLEIC ACIDS RESEARCH, 1996, 24 (20) :3974-3981
[2]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[3]   BINDING-PROPERTIES OF NEWLY IDENTIFIED XENOPUS PROTEINS CONTAINING DSRNA-BINDING MOTIFS [J].
BASS, BL ;
HURST, SR ;
SINGER, JD .
CURRENT BIOLOGY, 1994, 4 (04) :301-314
[4]   alpha helix-RNA major groove recognition in an HIV-1 Rev peptide RRE RNA complex [J].
Battiste, JL ;
Mao, HY ;
Rao, NS ;
Tan, RY ;
Muhandiram, DR ;
Kay, LE ;
Frankel, AD ;
Williamson, JR .
SCIENCE, 1996, 273 (5281) :1547-1551
[5]   Oncogenic potential of TAR RNA binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR [J].
Benkirane, M ;
Neuveut, C ;
Chun, RF ;
Smith, SM ;
Samuel, CE ;
Gatignol, A ;
Jeang, KT .
EMBO JOURNAL, 1997, 16 (03) :611-624
[6]  
Blair Edward D., 1995, Journal of Biomedical Science, V2, P322, DOI 10.1007/BF02255219
[7]   NMR SOLUTION STRUCTURE OF A DSRNA BINDING DOMAIN FROM DROSOPHILA STAUFEN PROTEIN REVEALS HOMOLOGY TO THE N-TERMINAL DOMAIN OF RIBOSOMAL-PROTEIN S5 [J].
BYCROFT, M ;
GRUNERT, S ;
MURZIN, AG ;
PROCTOR, M ;
STJOHNSTON, D .
EMBO JOURNAL, 1995, 14 (14) :3563-3571
[8]   ARGININE-MEDIATED RNA RECOGNITION - THE ARGININE FORK [J].
CALNAN, BJ ;
TIDOR, B ;
BIANCALANA, S ;
HUDSON, D ;
FRANKEL, AD .
SCIENCE, 1991, 252 (5009) :1167-1171
[9]   DOUBLE-STRANDED-RNA-DEPENDENT PROTEIN-KINASE AND TAR RNA-BINDING PROTEIN FORM HOMODIMERS AND HETERODIMERS IN-VIVO [J].
COSENTINO, GP ;
VENKATESAN, S ;
SERLUCA, FC ;
GREEN, SR ;
MATHEWS, MB ;
SONENBERG, N .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (21) :9445-9449
[10]   RNA binding strategies of ribosomal proteins [J].
Draper, DE ;
Reynaldo, LP .
NUCLEIC ACIDS RESEARCH, 1999, 27 (02) :381-388