RBM band shift-evidenced dispersion mechanism of single-wall carbon nanotube bundles with NaDDBS

被引:51
作者
Utsumi, Shigenori
Kanamaru, Mamiko
Honda, Hiroaki
Kanoh, Hirofumi
Tanaka, Hideki
Ohkubo, Takahiro
Sakai, Hideki
Abe, Masahiko
Kaneko, Katsumi
机构
[1] Chiba Univ, Fac Sci, Dept Chem, Chiba 2638522, Japan
[2] Tokyo Univ Sci, Dept Pure & Appl Chem, Fac Sci & Technol, Noda, Chiba 2788510, Japan
[3] Chiba Univ, Grad Sch Sci & Technol, Chiba 2638522, Japan
[4] Chiba Univ, Ctr Frontier Elect & Photon, Chiba 2638522, Japan
[5] Kyoto Univ, Dept Chem Engn, Nishikyo Ku, Kyoto 6068510, Japan
[6] Tokyo Univ Sci, Res Inst Sci & Technol, Noda, Chiba 2788510, Japan
关键词
single-wall carbon nanotube; bundle structure; NaDDBS; dispersion; surface tension; adsorption isotherm; Raman spectroscopy; radial breathing mode;
D O I
10.1016/j.jcis.2006.12.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The dispersion process of single-wall carbon nanotube (SWNT) by using sodium dodecylbenzene sulfortate (NaDDBS) was studied by means of surface tension measurements, ultraviolet-visible (UV-Vis) spectroscopy, scanning electron microscopy (SEM), and transmission electron spectroscopy (TEM). The critical micelle concentration (CMC) and the concentration where the surface tension begins to drop increase by the presence of SWNT. The isotherm of NaDDBS amount adsorbed on SWNT shows the plateau region at 0.2-6 mM and the saturated region above 40 mM. The external surface of SWNT bundle is fully covered with adsorbed NaDDBS at the plateau region, showing that SWNTs can be dispersed with the bundle form. On the other hand, SWNTs are dispersed in individual tubes at the saturated region, where the adsorption amount corresponds to coating of individual tube surfaces with NaDDBS. This dispersion state was confirmed by SEM and TEM observations. The effect of the dispersion state of SWNTs on radial breathing mode in Raman spectrum gave inherent peak shifts, being the in situ evidences on the g step-wise dispersion mechanism of the SWNT bundle to the individual tubes. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:276 / 284
页数:9
相关论文
共 95 条
[1]  
An KH, 2001, ADV MATER, V13, P497, DOI 10.1002/1521-4095(200104)13:7<497::AID-ADMA497>3.0.CO
[2]  
2-H
[3]   Hydrogen storage in high surface area carbon nanotubes produced by catalytic chemical vapor deposition [J].
Bacsa, R ;
Laurent, C ;
Morishima, R ;
Suzuki, H ;
Le Lay, M .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (34) :12718-12723
[4]   Purification of single-wall carbon nanotubes by microfiltration [J].
Bandow, S ;
Rao, AM ;
Williams, KA ;
Thess, A ;
Smalley, RE ;
Eklund, PC .
JOURNAL OF PHYSICAL CHEMISTRY B, 1997, 101 (44) :8839-8842
[5]   In-situ growth of "fused", ozonized single-walled carbon nanotube - CdTe quantum dot junctions" [J].
Banerjee, S ;
Wong, SS .
ADVANCED MATERIALS, 2004, 16 (01) :34-+
[6]   Structural characterization, optical properties, and improved solubility of carbon nanotubes functionalized with Wilkinson's catalyst [J].
Banerjee, S ;
Wong, SS .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (30) :8940-8948
[7]   Properties of carbon nanotube fibers spun from DNA-stabilized dispersions [J].
Barisci, JN ;
Tahhan, M ;
Wallace, GG ;
Badaire, S ;
Vaugien, T ;
Maugey, M ;
Poulin, P .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (02) :133-138
[8]   Single-wall nanostructured carbon for methane storage [J].
Bekyarova, E ;
Murata, K ;
Yudasaka, M ;
Kasuya, D ;
Iijima, S ;
Tanaka, H ;
Kahoh, H ;
Kaneko, K .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (20) :4681-4684
[9]   Quantum entanglement in carbon nanotubes [J].
Bena, C ;
Vishveshwara, S ;
Balents, L ;
Fisher, MPA .
PHYSICAL REVIEW LETTERS, 2002, 89 (03)
[10]   Multiprobe transport experiments on individual single-wall carbon nanotubes [J].
Bezryadin, A ;
Verschueren, ARM ;
Tans, SJ ;
Dekker, C .
PHYSICAL REVIEW LETTERS, 1998, 80 (18) :4036-4039