Local bifurcations of the Chen system

被引:84
作者
Lu, JH [1 ]
Zhou, TS
Chen, GR
Zhang, SC
机构
[1] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[3] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
[4] Chinese Acad Sci, Inst Appl Math, Acad Math & Syst Sci, Beijing 100080, Peoples R China
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2002年 / 12卷 / 10期
关键词
Chen system; local bifurcation; supercritical; subcritical;
D O I
10.1142/S0218127402005819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces a new practical method for distinguishing chaotic, periodic and quasiperiodic orbits based on a new criterion, and apply it to investigate the local bifurcations of the Chen system. Conditions for supercritical and subcritical bifurcations are obtained, with their parameter domains specified. The analytic results are also verified by numerical simulation studies.
引用
收藏
页码:2257 / 2270
页数:14
相关论文
共 27 条
  • [1] Synchronization of Rossler and Chen chaotic dynamical systems using active control
    Agiza, HN
    Yassen, MT
    [J]. PHYSICS LETTERS A, 2001, 278 (04) : 191 - 197
  • [2] [Anonymous], 2002, CHAOTIC TIME SERIES
  • [3] On a generalized Lorenz canonical form of chaotic systems
    Celikovsky, S
    Chen, GR
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (08): : 1789 - 1812
  • [4] Chang W, 2000, IEEE IND ELEC, P2159, DOI 10.1109/IECON.2000.972610
  • [5] Chen G., 1998, CHAOS ORDER METHODOL
  • [6] Yet another chaotic attractor
    Chen, GR
    Ueta, T
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07): : 1465 - 1466
  • [7] Hassard B., 1981, Theory and Applications of Hopf Bifurcation
  • [8] LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
  • [9] 2
  • [10] LU J, 2003, IN PRESS APPL MATH M, V24