Adaptive synchronization of high-order chaotic systems:: a feedback with low-order parametrization

被引:78
作者
Femat, R
Alvarez-Ramírez, J
Fernández-Anaya, G
机构
[1] UASLP, Fac Ciencias Quim, Ctr Invest & Estudios Posgrado, San Luis Potosi 78231, Mexico
[2] Univ Autonoma Metropolitana, Div Ciencias Basicas & Ingn, Mexico City, DF, Mexico
[3] Univ Iberoamer, Dept Matemat, Mexico City, DF, Mexico
来源
PHYSICA D | 2000年 / 139卷 / 3-4期
关键词
chaos control; chaos synchronization; robust synchronization;
D O I
10.1016/S0167-2789(99)00226-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, an adaptive strategy for chaos synchronization is developed. The proposed scheme allows the synchronization of high-order chaotic systems. Only one tuning parameter is required to perform the chaos synchronization. The nonidentical chaotic synchronization can be attained. Computer simulations are provided to verify the operation of the designed synchronization scheme. The proposed controller is implemented to secure communication and synchronization of inhomogeneous oscillators chain. Nevertheless, other practical applications can be physically carried out. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:231 / 246
页数:16
相关论文
共 22 条
[1]   STABILITY FOR DYNAMIC-SYSTEMS WITH 1ST INTEGRALS - A TOPOLOGICAL CRITERION [J].
AEYELS, D ;
SEPULCHRE, R .
SYSTEMS & CONTROL LETTERS, 1992, 19 (06) :461-465
[2]   Experimental signal transmission using synchronised state controlled cellular neural networks [J].
Arena, P ;
Baglio, S ;
Fortuna, L ;
Manganaro, G .
ELECTRONICS LETTERS, 1996, 32 (04) :362-363
[3]   Cooperative behavior of a chain of synaptically coupled chaotic neurons [J].
Bazhenov, M ;
Huerta, R ;
Rabinovich, MI ;
Sejnowski, T .
PHYSICA D, 1998, 116 (3-4) :392-400
[4]   Adaptive synchronization of Chua's oscillators [J].
Chua, LO ;
Yang, T ;
Zhong, GQ ;
Wu, CW .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (01) :189-201
[5]  
COLLINS JJ, 1995, NONLINEAR SCI, V3, P349
[6]   An adaptive approach to the control and synchronization of continuous-time chaotic systems [J].
DiBernardo, M .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (03) :557-568
[7]   Synchronization of a class of strictly different chaotic oscillators [J].
Femat, R ;
Alvarez-Ramirez, J .
PHYSICS LETTERS A, 1997, 236 (04) :307-313
[8]   A strategy to control chaos in nonlinear driven oscillators with least prior knowledge [J].
Femat, R ;
AlvarezRamirez, J ;
Gonzalez, J .
PHYSICS LETTERS A, 1997, 224 (4-5) :271-276
[9]   Clusters of synchronization and bistability in lattices of chaotic neurons [J].
Huerta, R ;
Bazhenov, M ;
Rabinovich, MI .
EUROPHYSICS LETTERS, 1998, 43 (06) :719-724
[10]  
Isidori A., 1989, NONLINEAR CONTROL SY