Nafion/zeolite nanocomposite membrane by in situ crystallization for a direct methanol fuel cell

被引:252
作者
Chen, Zhongwei
Holmberg, Brett
Li, Wenzhen
Wang, Xin
Deng, Weiqiao
Munoz, Ronnie
Yan, Yushan [1 ]
机构
[1] Univ Calif Riverside, Dept Environm Chem & Engn, Bourns Coll Engn, Ctr Environm Res & Technol, Riverside, CA 92521 USA
[2] CALTECH, Mat & Proc Simulat Ctr, Pasadena, CA 91125 USA
关键词
D O I
10.1021/cm060841q
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A method for preparing Nafion/ acid functionalized zeolite Beta (NAFB) nanocomposite membranes by in situ hydrothermal crystallization is described. The nanocomposite membranes have a slightly lower proton conductivity but a markedly lower methanol permeability (ca. 40% reduction). When tested with 1 M methanol feed, the direct methanol fuel cells (DMFCs) with the NAFB composite membranes have a slightly higher open circuit voltage (OCV; 3%) and much higher maximum power density (21%) than those with the pure Nafion 115 membranes. With a higher methanol concentration (5 M), the DMFCs with the NAFB composite membranes demonstrate a 14% higher OCV and a 93% higher maximum power density than those with the pure Nafion 115 membranes. Compared with the commercial Nafion 115 membranes, the NAFB composite membranes have slightly lower tensile strength but higher elastic modulus.
引用
收藏
页码:5669 / 5675
页数:7
相关论文
共 44 条
[1]   Investigation of PEMFC operation above 100°C employing perfluorosulfonic acid silicon oxide composite membranes [J].
Adjemian, KT ;
Srinivasan, S ;
Benziger, J ;
Bocarsly, AB .
JOURNAL OF POWER SOURCES, 2002, 109 (02) :356-364
[2]  
[Anonymous], J ELECTROCHEM SOC
[3]   Influence of the acid-base characteristics of inorganic fillers on the high temperature performance of composite membranes in direct methanol fuel cells [J].
Aricò, AS ;
Baglio, V ;
Di Blasi, A ;
Creti, P ;
Antonucci, PL ;
Antonucci, V .
SOLID STATE IONICS, 2003, 161 (3-4) :251-265
[4]   Investigation of the electrochemical behaviour in DMFCs of chabazite and clinoptilolite-based composite membranes [J].
Baglio, V ;
Di Blasi, A ;
Aricò, AS ;
Antonucci, V ;
Antonucci, PL ;
Nannetti, F ;
Tricoli, V .
ELECTROCHIMICA ACTA, 2005, 50 (25-26) :5181-5188
[5]   Hybrid Nafion®-inorganic membrane with potential applications for polymer electrolyte fuel cells [J].
Baradie, B ;
Dodelet, JP ;
Guay, D .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2000, 489 (1-2) :101-105
[6]   Synthesis of template-free zeolite nanocrystals by reverse microemulsion-microwave method [J].
Chen, ZW ;
Li, S ;
Yan, YS .
CHEMISTRY OF MATERIALS, 2005, 17 (09) :2262-2266
[7]   Thermodynamics and proton transport in Nafion -: III.: Proton transport in Nafion/sulfated ZrO2 nanocomposite membranes [J].
Choi, P ;
Jalani, NH ;
Datta, R .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (08) :A1548-A1554
[8]   Novel Nafion ORMOSIL hybrids via in situ sol-gel reactions .1. Probe of ORMOSIL phase nanostructures by infrared spectroscopy [J].
Deng, Q ;
Moore, RB ;
Mauritz, KA .
CHEMISTRY OF MATERIALS, 1995, 7 (12) :2259-2268
[9]   TGA-FTi.r. investigation of the thermal degradation of Nafion® and Nafion®/[silicon oxide]-based nanocomposites [J].
Deng, Q ;
Wilkie, CA ;
Moore, RB ;
Mauritz, KA .
POLYMER, 1998, 39 (24) :5961-5972
[10]   Nafion/ORMOSIL hybrids via in situ sol-gel reactions .3. Pyrene fluorescence probe investigations of nanoscale environment [J].
Deng, Q ;
Hu, Y ;
Moore, RB ;
McCormick, CL ;
Mauritz, KA .
CHEMISTRY OF MATERIALS, 1997, 9 (01) :36-44