Wnt1 and MEK1 cooperate to promote cyclin D1 accumulation and cellular transformation

被引:65
作者
Rimerman, RA
Gellert-Randleman, A
Diehl, JA [1 ]
机构
[1] Univ Nebraska, Med Ctr, Eppley Inst Res Canc & Allied Dis, Omaha, NE 68198 USA
[2] Univ Nebraska, Med Ctr, Dept Biochem & Mol Biol, Omaha, NE 68198 USA
[3] Univ Nebraska, Med Ctr, Dept Pathol & Microbiol, Omaha, NE 68198 USA
关键词
D O I
10.1074/jbc.M910241199
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Members of the Wnt family of signal transducers regulate cellular differentiation/reorganization and cellular proliferation. However, few pro-proliferative targets of Wnt have been identified. We now show that cyclin D1, a critical mediator of cell cycle progression, is a downstream target of Wnt-dependent signaling. NIH-3T3 cell lines engineered to overexpress Wnt1 displayed reduced glycogen synthase kinase-3 beta activity. Wnt1-dependent glycogen synthase kinase-3 beta inhibition corresponded with decreased cyclin D1 proteolysis and, thus, hyperaccumulation of active cyclin D1 . CDK4 (cyclin-dependent kinase 4) kinase. However, in the absence of serum-derived growth factors, Wnt-1 was not sufficient to drive cyclin D1 accumulation or S-phase entry. In contrast, cells engineered to co-express Wnt1 and activated MEK1 accumulated high levels of cyclin D1 and entered the DNA synthetic phase in the absence of serum-derived growth factors, a characteristic of neoplastic transformation. The ability of a dominant-negative cyclin D1 mutant, D1-T156A, to inhibit Wnt1/MEK1-dependent S-phase entry suggests that cyclin D1 is a critical downstream target for Wnt1- and MEK1-dependent cellular proliferation.
引用
收藏
页码:14736 / 14742
页数:7
相关论文
共 50 条
[1]   Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27(KIP1) [J].
Aktas, H ;
Cai, H ;
Cooper, GM .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (07) :3850-3857
[2]   TRANSFORMING P21(RAS) MUTANTS AND C-ETS-2 ACTIVATE THE CYCLIN D1 PROMOTER THROUGH DISTINGUISHABLE REGIONS [J].
ALBANESE, C ;
JOHNSON, J ;
WATANABE, G ;
EKLUND, N ;
VU, D ;
ARNOLD, A ;
PESTELL, RG .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23589-23597
[3]   Characterization of Wnt-1 and Wnt-2 induced growth alterations and signaling pathways in NIH3T3 fibroblasts [J].
Bafico, A ;
Gazit, A ;
Wu-Morgan, SS ;
Yaniv, A ;
Aaronson, SA .
ONCOGENE, 1998, 16 (21) :2819-2825
[4]   CYCLIN D1 IS A NUCLEAR-PROTEIN REQUIRED FOR CELL-CYCLE PROGRESSION IN G(1) [J].
BALDIN, V ;
LUKAS, J ;
MARCOTE, MJ ;
PAGANO, M ;
DRAETTA, G .
GENES & DEVELOPMENT, 1993, 7 (05) :812-821
[5]   THE PRAD-1 CYCLIN D1 ONCOGENE PRODUCT ACCUMULATES ABERRANTLY IN A SUBSET OF COLORECTAL CARCINOMAS [J].
BARTKOVA, J ;
LUKAS, J ;
STRAUSS, M ;
BARTEK, J .
INTERNATIONAL JOURNAL OF CANCER, 1994, 58 (04) :568-573
[6]   Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β [J].
Behrens, J ;
Jerchow, BA ;
Würtele, M ;
Grimm, J ;
Asbrand, C ;
Wirtz, R ;
Kühl, M ;
Wedlich, D ;
Birchmeier, W .
SCIENCE, 1998, 280 (5363) :596-599
[7]   Mammalian unfolded protein response inhibits cyclin D1 translation and cell-cycle progression [J].
Brewer, JW ;
Hendershot, LM ;
Sherr, CJ ;
Diehl, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (15) :8505-8510
[8]   IDENTIFICATION OF PROTEIN PRODUCTS ENCODED BY THE PROTOONCOGENE INT-1 [J].
BROWN, AMC ;
PAPKOFF, J ;
FUNG, YKT ;
SHACKLEFORD, GM ;
VARMUS, HE .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (11) :3971-3977
[9]   HIGH-EFFICIENCY TRANSFORMATION OF MAMMALIAN-CELLS BY PLASMID DNA [J].
CHEN, C ;
OKAYAMA, H .
MOLECULAR AND CELLULAR BIOLOGY, 1987, 7 (08) :2745-2752
[10]   Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1) [J].
Cheng, MG ;
Sexl, V ;
Sherr, CJ ;
Roussel, MF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (03) :1091-1096