Vascular superoxide production by NAD(P)H oxidase - Association with endothelial dysfunction and clinical risk factors

被引:519
作者
Guzik, TJ
West, NEJ
Black, E
McDonald, D
Ratnatunga, C
Pillai, R
Channon, KM [1 ]
机构
[1] Univ Oxford, John Radcliffe Hosp, Dept Cardiovasc Med, Oxford OX3 9DU, England
[2] Univ Oxford, John Radcliffe Hosp, Dept Cardiothorac Surg, Oxford OX3 9DU, England
关键词
atherosclerosis; endothelium; superoxide; nitric oxide; diabetes;
D O I
10.1161/01.RES.86.9.e85
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Superoxide anion plays important roles in vascular disease states. Increased superoxide production contributes to reduced nitric oxide (NO) bioactivity and endothelial dysfunction in experimental models of vascular disease. We measured superoxide production by NAD(P)H oxidase in human blood vessels and examined the relationships between NAD(P)H oxidase activity, NO-mediated endothelial function, and clinical risk factors for atherosclerosis, Endothelium-dependent vasorelaxations and direct measurements of vascular superoxide production were determined in human saphenous veins obtained from 133 patients with coronary artery disease and identified risk factors. The predominant source of vascular superoxide production was an NAD(P)H-dependent oxidase. Increased vascular NAD(P)H oxidase activity was associated with reduced NO-mediated vasorelaxation, Furthermore, reduced endothelial vasorelaxations and increased vascular NAD(P)H oxidase activity were both associated with increased clinical risk factors for atherosclerosis, Diabetes and hypercholesterolemia were independently associated with increased NADH-dependent superoxide production. The association of increased vascular NAD(P)H oxidase activity with endothelial dysfunction and with clinical risk factors suggests an important role for NAD(P)H oxidase-mediated superoxide production in human atherosclerosis. The full text of this article is available at http://www.circresaha.org.
引用
收藏
页码:E85 / E90
页数:6
相关论文
共 41 条
[1]   Expression of NADH/NADPH oxidase p22phox in human coronary arteries [J].
Azumi, H ;
Inoue, N ;
Takeshita, S ;
Rikitake, Y ;
Kawashima, S ;
Hayashi, Y ;
Itoh, H ;
Yokoyama, M .
CIRCULATION, 1999, 100 (14) :1494-1498
[2]   Endothelial dysfunction in chronic myocardial infarction despite increased vascular endothelial nitric oxide synthase and soluble guanylate cyclase expression -: Role of enhanced vascular superoxide production [J].
Bauersachs, J ;
Bouloumié, A ;
Fraccarollo, D ;
Hu, K ;
Busse, R ;
Ertl, G .
CIRCULATION, 1999, 100 (03) :292-298
[3]   Vasodilator dysfunction in aged spontaneously hypertensive rats:: changes in NO synthase III and soluble guanylyl cyclase expression, and in superoxide anion production [J].
Bauersachs, J ;
Bouloumié, A ;
Mülsch, A ;
Wiemer, G ;
Fleming, I ;
Busse, R .
CARDIOVASCULAR RESEARCH, 1998, 37 (03) :772-779
[4]   Expression of a functional neutrophil-type NADPH oxidase in cultured rat coronary microvascular endothelial cells [J].
Bayraktutan, U ;
Draper, N ;
Lang, D ;
Shah, AM .
CARDIOVASCULAR RESEARCH, 1998, 38 (01) :256-262
[5]   A variant of p22phox, involved in generation of reactive oxygen species in the vessel wall, is associated with progression of coronary atherosclerosis [J].
Cahilly, C ;
Ballantyne, CM ;
Lim, DS ;
Gotto, A ;
Marian, AJ .
CIRCULATION RESEARCH, 2000, 86 (04) :391-395
[6]   In vivo gene transfer of nitric oxide synthase enhances vasomotor function in carotid arteries from normal and cholesterol-fed rabbits [J].
Channon, KM ;
Qian, HS ;
Neplioueva, V ;
Blazing, MA ;
Olmez, E ;
Shetty, GA ;
Youngblood, SA ;
Pawloski, J ;
McMahon, T ;
Stamler, JS ;
George, SE .
CIRCULATION, 1998, 98 (18) :1905-1911
[7]   THE SIMULTANEOUS GENERATION OF SUPEROXIDE AND NITRIC-OXIDE CAN INITIATE LIPID-PEROXIDATION IN HUMAN LOW-DENSITY-LIPOPROTEIN [J].
DARLEYUSMAR, VM ;
HOGG, N ;
OLEARY, VJ ;
WILSON, MT ;
MONCADA, S .
FREE RADICAL RESEARCH COMMUNICATIONS, 1992, 17 (01) :9-20
[8]   Oscillatory and steady laminar shear stress differentially affect human endothelial redox state - Role of a superoxide-producing NADH oxidase [J].
De Keulenaer, GW ;
Chappell, DC ;
Ishizaka, N ;
Nerem, RM ;
Alexander, RW ;
Griendling, KK .
CIRCULATION RESEARCH, 1998, 82 (10) :1094-1101
[9]   Hypercholesterolemia decreases nitric oxide production by promoting the interaction of caveolin and endothelial nitric oxide synthase [J].
Feron, O ;
Dessy, C ;
Moniotte, S ;
Desager, JP ;
Balligand, JL .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 103 (06) :897-905
[10]   p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats [J].
Fukui, T ;
Ishizaka, N ;
Rajagopalan, S ;
Lauren, JB ;
Capers, Q ;
Taylor, WR ;
Harrison, DG ;
deLeon, H ;
Wilcox, JN ;
Griendling, KK .
CIRCULATION RESEARCH, 1997, 80 (01) :45-51