Modeling methanogenesis with a genome-scale metabolic reconstruction of Methanosarcina barkeri

被引:170
作者
Feist, Adam M.
Scholten, Johannes C. M.
Palsson, Bernhard O.
Brockman, Fred J.
Ideker, Trey
机构
[1] Univ Calif San Diego, Dept Bioengn, La Jolla, CA 92093 USA
[2] Pacific NW Natl Lab, Environm Microbiol Grp, Richland, WA 99352 USA
关键词
archaeal metabolism; metabolic modeling; methanogenesis; Methanosarcina barkeri; network reconstruction;
D O I
10.1038/msb4100046
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We present a genome-scale metabolic model for the archaeal methanogen Methanosarcina barkeri. We characterize the metabolic network and compare it to reconstructions from the prokaryotic, eukaryotic and archaeal domains. Using the model in conjunction with constraint-based methods, we simulate the metabolic fluxes and resulting phenotypes induced by different environmental and genetic conditions. This represents the first large-scale simulation of either a methanogen or an archaeal species. Model predictions are validated by comparison to experimental growth measurements and phenotypes of M. barkeri on different substrates. The predicted growth phenotypes for wild type and mutants of the methanogenic pathway have a high level of agreement with experimental findings. We further examine the efficiency of the energy-conserving reactions in the methanogenic pathway, specifically the Ech hydrogenase reaction, and determine a stoichiometry for the nitrogenase reaction. This work demonstrates that a reconstructed metabolic network can serve as an analysis platform to predict cellular phenotypes, characterize methanogenic growth, improve the genome annotation and further uncover the metabolic characteristics of methanogenesis.
引用
收藏
页数:14
相关论文
共 58 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
Batagelj V., 1998, Connections, V21, P47
[3]   STRUCTURE OF A METHANOFURAN DERIVATIVE FOUND IN CELL-EXTRACTS OF METHANOSARCINA-BARKERI [J].
BOBIK, TA ;
DONNELLY, MI ;
RINEHART, KL ;
WOLFE, RS .
ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, 1987, 254 (02) :430-436
[4]   GROWTH OF METHANOSARCINA-BARKERI (FUSARO) UNDER NONMETHANOGENIC CONDITIONS BY THE FERMENTATION OF PYRUVATE TO ACETATE - ATP SYNTHESIS VIA THE MECHANISM OF SUBSTRATE LEVEL PHOSPHORYLATION [J].
BOCK, AK ;
SCHONHEIT, P .
JOURNAL OF BACTERIOLOGY, 1995, 177 (08) :2002-2007
[5]  
BOCK AK, 1994, ARCH MICROBIOL, V161, P33, DOI 10.1007/s002030050019
[6]   FIXATION OF MOLECULAR NITROGEN BY METHANOSARCINA-BARKERI [J].
BOMAR, M ;
KNOLL, K ;
WIDDEL, F .
FEMS MICROBIOLOGY ECOLOGY, 1985, 31 (01) :47-55
[7]   Genome-scale analysis of Streptomyces coelicolor A3(2) metabolism [J].
Borodina, I ;
Krabben, P ;
Nielsen, J .
GENOME RESEARCH, 2005, 15 (06) :820-829
[8]   Tetrahydrofolate-specific enzymes in Methanosarcina barkeri and growth dependence of this methanogenic archaeon on folic acid or p-aminobenzoic acid [J].
Buchenau, B ;
Thauer, R .
ARCHIVES OF MICROBIOLOGY, 2004, 182 (04) :313-325
[9]   OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization [J].
Burgard, AP ;
Pharkya, P ;
Maranas, CD .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) :647-657
[10]   Analysis of genes encoding an alternative nitrogenase in the archaeon Methanosarcina barkeri 227 [J].
Chien, YT ;
Auerbuch, V ;
Brabban, AD ;
Zinder, SH .
JOURNAL OF BACTERIOLOGY, 2000, 182 (11) :3247-3253