Numerical solution of the Boltzmann Equation using a fully conservative difference scheme based on the Fast Fourier Transform

被引:17
作者
Bobylev, AV
Rjasanow, S
机构
[1] MV Keldysh Appl Math Inst, Moscow 125047, Russia
[2] Univ Saarland, Fachbereich Math 9, D-66041 Saarbrucken, Germany
来源
TRANSPORT THEORY AND STATISTICAL PHYSICS | 2000年 / 29卷 / 3-5期
关键词
D O I
10.1080/00411450008205876
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An effective deterministic method based on the Fast Fourier Transform (FFT) for the Boltzmann equation with Maxwell molecules is considered. The global existence, uniqueness and limitedness of the discrete solution is proved. An effective procedure for the conservation of the macroscopic quantities is described. The results of some numerical tests are presented.
引用
收藏
页码:289 / 310
页数:22
相关论文
共 17 条
[1]  
Bird G. A., 1994, MOL GAS DYNAMICS DIR
[2]  
Bobylev A, 1997, EUR J MECH B-FLUID, V16, P293
[3]  
BOBYLEV AV, 1995, CR ACAD SCI I-MATH, V320, P639
[4]  
BOBYLEV AV, 1975, DOKL AKAD NAUK SSSR+, V225, P1041
[5]  
BOBYLEV AV, 1999, IN PRESS EUR J MEC B
[6]  
Cercignani C, 1994, MATH THEORY DILUTE G
[7]   AN ALGORITHM FOR MACHINE CALCULATION OF COMPLEX FOURIER SERIES [J].
COOLEY, JW ;
TUKEY, JW .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :297-&
[8]   HYPERBOLIC DISTRIBUTION PROBLEMS AND HALF-INTEGRAL WEIGHT MAASS FORMS [J].
DUKE, W .
INVENTIONES MATHEMATICAE, 1988, 92 (01) :73-90
[9]   FOURIER COEFFICIENTS OF MODULAR-FORMS OF HALF-INTEGRAL WEIGHT [J].
IWANIEC, H .
INVENTIONES MATHEMATICAE, 1987, 87 (02) :385-401
[10]   Higher order approximation methods for the Boltzmann equation [J].
Ohwada, T .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 139 (01) :1-14