Structural consequences of replacement of an α-helical Pro residue in Escherichia coli thioredoxin

被引:13
作者
Rudresh
Jain, R
Dani, V
Mitra, A
Srivastava, S
Sarma, SP
Varadarajan, R [1 ]
Ramakumar, S
机构
[1] Indian Inst Sci, Mol Biophys Unit, Bangalore 560012, Karnataka, India
[2] Indian Inst Sci, Dept Phys, Bangalore 560012, Karnataka, India
[3] Indian Inst Sci, Bioinformat Ctr, Bangalore 560012, Karnataka, India
来源
PROTEIN ENGINEERING | 2002年 / 15卷 / 08期
关键词
alpha-helix; mutant; proline; thermal stability; thioredoxin;
D O I
10.1093/protein/15.8.627
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
While it is well known that introduction of Pro residues into the interior of protein alpha-helices is destabilizing, there have been few studies that have examined the structural and thermodynamic effects of the replacement of a Pro residue in the interior of a protein alpha-helix. We have previously reported an increase in stability in the P40S mutant of Escherichia coli thioredoxin of 1-1.5 kcal/mol in the temperature range 280-330 K. This paper describes the structure of the P40S mutant at a resolution of 1.8 Angstrom. In wild-type thioredoxin, P40 is located in the interior of helix two, a long alpha-helix that extends from residues 32 to 49 with a. kink at residue 40. Structural differences between the wild-type and P40S are largely localized to the above helix. In the P40S mutant, there is an expected additional hydrogen bond formed between the amide of S40 and the carbonyl of residue K36 and also additional hydrogen bonds between the side chain of S40 and the carbonyl of K36. The helix remains kinked. In the wild-type, main chain hydrogen bonds exist between the amide of 44 and carbonyl of 40 and between the amide of 43 and carbonyl of 39. However, these are absent in P40S. Instead, these main chain atoms are hydrogen bonded to water molecules. The increased stability of P40S is likely to be due to the net increase in the number of hydrogen bonds in helix two of E. coli thioredoxin.
引用
收藏
页码:627 / 633
页数:7
相关论文
共 29 条
[1]   REPLACEMENTS OF PRO86 IN PHAGE-T4 LYSOZYME EXTEND AN ALPHA-HELIX BUT DO NOT ALTER PROTEIN STABILITY [J].
ALBER, T ;
BELL, JA ;
DAOPIN, S ;
NICHOLSON, H ;
WOZNIAK, JA ;
COOK, S ;
MATTHEWS, BW .
SCIENCE, 1988, 239 (4840) :631-635
[2]   THE CCP4 SUITE - PROGRAMS FOR PROTEIN CRYSTALLOGRAPHY [J].
BAILEY, S .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1994, 50 :760-763
[3]   MLEV-17-BASED TWO-DIMENSIONAL HOMONUCLEAR MAGNETIZATION TRANSFER SPECTROSCOPY [J].
BAX, A ;
DAVIS, DG .
JOURNAL OF MAGNETIC RESONANCE, 1985, 65 (02) :355-360
[4]   STRUCTURAL BASIS OF AMINO-ACID ALPHA-HELIX PROPENSITY [J].
BLABER, M ;
ZHANG, XJ ;
MATTHEWS, BW .
SCIENCE, 1993, 260 (5114) :1637-1640
[5]   FREE R-VALUE - A NOVEL STATISTICAL QUANTITY FOR ASSESSING THE ACCURACY OF CRYSTAL-STRUCTURES [J].
BRUNGER, AT .
NATURE, 1992, 355 (6359) :472-475
[6]   Crystallography & NMR system:: A new software suite for macromolecular structure determination [J].
Brunger, AT ;
Adams, PD ;
Clore, GM ;
DeLano, WL ;
Gros, P ;
Grosse-Kunstleve, RW ;
Jiang, JS ;
Kuszewski, J ;
Nilges, M ;
Pannu, NS ;
Read, RJ ;
Rice, LM ;
Simonson, T ;
Warren, GL .
ACTA CRYSTALLOGRAPHICA SECTION D-BIOLOGICAL CRYSTALLOGRAPHY, 1998, 54 :905-921
[7]  
Chakrabarti A, 1999, PROTEIN SCI, V8, P2455
[8]   C-H•••O hydrogen bond involving proline residues in α-helices [J].
Chakrabarti, P ;
Chakrabarti, S .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 284 (04) :867-873
[9]   ALIGN: a program to superimpose protein coordinates, accounting for insertions and deletions [J].
Cohen, GH .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 1997, 30 :1160-1161
[10]   NMRPIPE - A MULTIDIMENSIONAL SPECTRAL PROCESSING SYSTEM BASED ON UNIX PIPES [J].
DELAGLIO, F ;
GRZESIEK, S ;
VUISTER, GW ;
ZHU, G ;
PFEIFER, J ;
BAX, A .
JOURNAL OF BIOMOLECULAR NMR, 1995, 6 (03) :277-293