Inorganic nitrogen losses from a forested ecosystem in response to physical, chemical, biotic, and climatic perturbations

被引:121
作者
Aber, JD [1 ]
Ollinger, SV
Driscoll, CT
Likens, GE
Holmes, RT
Freuder, RJ
Goodale, CL
机构
[1] Univ New Hampshire, Complex Syst Res Ctr, Durham, NH 03824 USA
[2] Syracuse Univ, Dept Civil & Environm Engn, Syracuse, NY 13244 USA
[3] Inst Ecosyst Studies, Millbrook, NY 12545 USA
[4] Dartmouth Coll, Dept Biol, Hanover, NH 03755 USA
[5] Woods Hole Res Ctr, Woods Hole, MA 02543 USA
关键词
model; PnET; climate; harvest; defoliation; CO2; ozone; N deposition; nitrate; Hubbard Brook Experimental Forest; streams;
D O I
10.1007/s10021-002-0203-8
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Nitrate leaching to streams is a sensitive indicator of the biogeochemical status of forest ecosystems. Two primary theories predicting long-term (decadal) changes in nitrate loss rates (N saturation theory and the nutrient retention hypothesis) both predict increasing dissolved inorganic nitrogen (DIN) losses for watershed 6 (W6), the biogeochemical reference watershed at the Hubbard Brook Experimental Forest (HBEF). Measured values, however, have declined substantially since measurements began in the mid-1960s. Are these theories wrong, or are there other important controls on DIN losses at the annual to decadal time scale that have obscured the tendency toward higher losses over time? We tested the individual and combined effects of several forms of disturbance on DIN loss rates from northern hardwood forests by comparing predictions from a relatively simple model of forest carbon, nitrogen, and water dynamics (PnET-CN) with the long-term record of annual DIN loss from W6 at HBEF. Perturbations tested include interannual climate variation, changes in atmospheric chemistry (CO2, O-3, N deposition), and physical and biotic disturbances (two harvests, a hurricane salvage, and a defoliation event). No single disturbance caused changes in DIN losses to mimic measured values. Only when run with all of the disturbances combined did the model-predicted pattern of interannual change in DIN loss approach the measured record. Single-disturbance simulations allow an estimation of the role of each in the total pattern of DIN loss. We conclude that DIN losses from W6 were elevated in the 1960s by a combination of recovery from extreme drought and a significant defoliation event. N deposition alone, in the absence of other disturbances, would have increased DIN losses by 0.35 g N m(-2)y(-1). These findings indicate that predictions of DIN losses must take into account the full spectrum of disturbance events and changes in environmental conditions impacting the systems examined.
引用
收藏
页码:648 / 658
页数:11
相关论文
共 75 条
  • [1] Nitrogen saturation in temperate forest ecosystems - Hypotheses revisited
    Aber, J
    McDowell, W
    Nadelhoffer, K
    Magill, A
    Berntson, G
    Kamakea, M
    McNulty, S
    Currie, W
    Rustad, L
    Fernandez, I
    [J]. BIOSCIENCE, 1998, 48 (11) : 921 - 934
  • [2] NITROGEN SATURATION IN NORTHERN FOREST ECOSYSTEMS
    ABER, JD
    NADELHOFFER, KJ
    STEUDLER, P
    MELILLO, JM
    [J]. BIOSCIENCE, 1989, 39 (06) : 378 - 386
  • [3] Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests
    Aber, JD
    Driscoll, CT
    [J]. GLOBAL BIOGEOCHEMICAL CYCLES, 1997, 11 (04) : 639 - 648
  • [4] Extrapolating leaf CO2 exchange to the canopy: A generalized model of forest photosynthesis compared with measurements by eddy correlation
    Aber, JD
    Reich, PB
    Goulden, ML
    [J]. OECOLOGIA, 1996, 106 (02) : 257 - 265
  • [5] FACTORS CONTROLLING NITROGEN CYCLING AND NITROGEN SATURATION IN NORTHERN TEMPERATE FOREST ECOSYSTEMS
    ABER, JD
    MELILLO, JM
    NADELHOFFER, KJ
    PASTOR, J
    BOONE, RD
    [J]. ECOLOGICAL APPLICATIONS, 1991, 1 (03) : 303 - 315
  • [6] Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition
    Aber, JD
    Ollinger, SV
    Driscoll, CT
    [J]. ECOLOGICAL MODELLING, 1997, 101 (01) : 61 - 78
  • [7] Predicting the effects of climate change on water yield and forest production in the northeastern United States
    Aber, JD
    Ollinger, SV
    Federer, CA
    Reich, PB
    Goulden, ML
    Kicklighter, DW
    Melillo, JM
    Lathrop, RG
    [J]. CLIMATE RESEARCH, 1995, 5 (03) : 207 - 222
  • [8] [Anonymous], 1996, Intergovernmental Panel on Climate Change
  • [9] Factors controlling long- and short-term sequestration of atmospheric CO2 in a mid-latitude forest
    Barford, CC
    Wofsy, SC
    Goulden, ML
    Munger, JW
    Pyle, EH
    Urbanski, SP
    Hutyra, L
    Saleska, SR
    Fitzjarrald, D
    Moore, K
    [J]. SCIENCE, 2001, 294 (5547) : 1688 - 1691
  • [10] Fast nitrate immobilization in N saturated temperate forest soils
    Berntson, GM
    Aber, JD
    [J]. SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (02) : 151 - 156