Regulation of ALK-1 signaling by the nuclear receptor LXRβ

被引:22
作者
Mo, JY
Fang, SJJ
Chen, W
Blobe, GC
机构
[1] Duke Univ, Med Ctr, Dept Med & Pharmacol, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Dept Canc Biol, Durham, NC 27710 USA
[3] Duke Univ, Med Ctr, Howard Hughes Med Inst, Durham, NC 27710 USA
关键词
D O I
10.1074/jbc.M210376200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The transforming growth factor beta (TGF-beta) receptor, ALK-1, is expressed specifically on endothelial cells and is essential for angiogenesis, as demonstrated by its targeted deletion in mice and its mutation in the human disease hereditary hemorrhagic telangiectasia. Although ALK-1 and another endothelial-specific TGF-beta receptor, endoglin, both bind TGF-beta with identical isoform specificity and form a complex together, neither has been shown to signal in response to TGF-beta, and the mechanism by which these receptors signal in endothelial cells remains unknown. Here we report the identification of the nuclear receptor liver X receptor beta (LXRbeta) as a modulator/mediator of ALK-1 signaling. The cytoplasmic domain of ALK-1 specifically binds to LXRbeta in vitro and in vivo. Expression of activated ALK-1 results in translocation of LXRbeta from the nuclear compartment to the cytoplasmic compartment. The interaction of activated ALK-1 with LXRbeta in the cytoplasmic compartment results in the specific phosphorylation of LXRbeta by ALK-1, primarily on serine residues. LXRbeta subsequently modulates signaling by ALK-1 and the closely related TGF-beta receptor, ALK-2, as demonstrated by specific and potent inhibition of ALK-1- and ALK-2-mediated transcriptional responses, establishing LXRbeta as a potential modulator/mediator of ALK-1/A.LK-2 signaling.
引用
收藏
页码:50788 / 50794
页数:7
相关论文
共 54 条
[1]   Hepatic cholesterol metabolism and resistance to dietary cholesterol in LXRβ-deficient mice [J].
Alberti, S ;
Schuster, G ;
Parini, P ;
Feltkamp, D ;
Diczfalusy, U ;
Rudling, M ;
Angelin, B ;
Björkhem, I ;
Pettersson, S ;
Gustafsson, JÅ .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 107 (05) :565-573
[2]   A NOVEL ORPHAN RECEPTOR-SPECIFIC FOR A SUBSET OF THYROID HORMONE-RESPONSIVE ELEMENTS AND ITS INTERACTION WITH THE RETINOID/THYROID HORMONE-RECEPTOR SUBFAMILY [J].
APFEL, R ;
BENBROOK, D ;
LERNHARDT, E ;
ORTIZ, MA ;
SALBERT, G ;
PFAHL, M .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (10) :7025-7035
[3]  
Armes NA, 1997, DEVELOPMENT, V124, P3797
[4]   Endoglin, an ancillary TGFβ receptor, is required for extraembryonic angiogenesis and plays a key role in heart development [J].
Arthur, HM ;
Ure, J ;
Smith, AJH ;
Renforth, G ;
Wilson, DI ;
Torsney, E ;
Charlton, R ;
Parums, DV ;
Jowett, T ;
Marchuk, DA ;
Burn, J ;
Diamond, AG .
DEVELOPMENTAL BIOLOGY, 2000, 217 (01) :42-53
[5]   IDENTIFICATION OF HUMAN ACTIVIN AND TGF-BETA TYPE-I RECEPTORS THAT FORM HETEROMERIC KINASE COMPLEXES WITH TYPE-II RECEPTORS [J].
ATTISANO, L ;
CARCAMO, J ;
VENTURA, F ;
WEIS, FMB ;
MASSAGUE, J ;
WRANA, JL .
CELL, 1993, 75 (04) :671-680
[6]   Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-β superfamily [J].
Barbara, NP ;
Wrana, JL ;
Letarte, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (02) :584-594
[7]   Mechanisms of disease:: Role of transforming growth factor β in human disease. [J].
Blobe, GC ;
Schiemann, WP ;
Lodish, HF .
NEW ENGLAND JOURNAL OF MEDICINE, 2000, 342 (18) :1350-1358
[8]   A murine model of hereditary hemorrhagic telangiectasia [J].
Bourdeau, A ;
Dumont, DJ ;
Letarte, M .
JOURNAL OF CLINICAL INVESTIGATION, 1999, 104 (10) :1343-1351
[9]   Oxysterols and atherosclerosis [J].
Brown, AJ ;
Jessup, W .
ATHEROSCLEROSIS, 1999, 142 (01) :1-28
[10]   Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation [J].
Bunone, G ;
Briand, PA ;
Miksicek, RJ ;
Picard, D .
EMBO JOURNAL, 1996, 15 (09) :2174-2183