The matK gene: Sequence variation and application in plant systematics

被引:205
作者
Hilu, KW
Liang, HP
机构
[1] Department of Biology, Virginia Polytechnic Institute, State University, Blacksburg
关键词
DNA sequencing; matK; phylogeny; systematics;
D O I
10.2307/2445819
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Although the matK gene has been used in addressing systematic questions in four families, its potential application to plant systematics above the family level has not been investigated. This paper examines the rates, patterns, and types of nucleotide substitutions in the gene and addresses its utility in constructing phylogenies above the family level. Eleven complete sequences from the GenBank representing seed plants and liverworts and nine partial sequences generated for genera representing the monocot families Poaceae, Joinvilleaceae, Cyperaceae, and Smilacaceae were analyzed. The study underscored the high rate of substitution in the gene and the presence of mutationally conserved sectors. The use of different sectors of the gene and the cumulative inclusion of informative sites showed that the 3' region was most useful in resolving phylogeny, and that the topology and robustness of the tree reached a plateau after the inclusion of 100 informative sites from that region for the taxa used. The impact of using partial sequencing on sample size is addressed. The presence of a relatively conserved 3' region and the less conserved 5' region provides two sets of characters that can be used at different taxonomic levels from the tribal to the division levels.
引用
收藏
页码:830 / 839
页数:10
相关论文
共 40 条
[1]  
[Anonymous], 1992, MacClade: Analysis of phylogeny and character evolution
[2]   POLYPHYLY OF ARUNDINOIDEAE (POACEAE) - EVIDENCE FROM RBCL SEQUENCE DATA [J].
BARKER, NP ;
LINDER, HP ;
HARLEY, EH .
SYSTEMATIC BOTANY, 1995, 20 (04) :423-435
[3]   THE LIMITS OF AMINO-ACID SEQUENCE DATA IN ANGIOSPERM PHYLOGENETIC RECONSTRUCTION [J].
BREMER, K .
EVOLUTION, 1988, 42 (04) :795-803
[4]  
Campbell CS, 1987, GRASS SYSTEMATICS EV, P217
[5]   PHYLOGENETICS OF SEED PLANTS - AN ANALYSIS OF NUCLEOTIDE-SEQUENCES FROM THE PLASTID GENE RBCL [J].
CHASE, MW ;
SOLTIS, DE ;
OLMSTEAD, RG ;
MORGAN, D ;
LES, DH ;
MISHLER, BD ;
DUVALL, MR ;
PRICE, RA ;
HILLS, HG ;
QIU, YL ;
KRON, KA ;
RETTIG, JH ;
CONTI, E ;
PALMER, JD ;
MANHART, JR ;
SYTSMA, KJ ;
MICHAELS, HJ ;
KRESS, WJ ;
KAROL, KG ;
CLARK, WD ;
HEDREN, M ;
GAUT, BS ;
JANSEN, RK ;
KIM, KJ ;
WIMPEE, CF ;
SMITH, JF ;
FURNIER, GR ;
STRAUSS, SH ;
XIANG, QY ;
PLUNKETT, GM ;
SOLTIS, PS ;
SWENSEN, SM ;
WILLIAMS, SE ;
GADEK, PA ;
QUINN, CJ ;
EGUIARTE, LE ;
GOLENBERG, E ;
LEARN, GH ;
GRAHAM, SW ;
BARRETT, SCH ;
DAYANANDAN, S ;
ALBERT, VA .
ANNALS OF THE MISSOURI BOTANICAL GARDEN, 1993, 80 (03) :528-580
[6]   A PHYLOGENY OF THE GRASS FAMILY (POACEAE) BASED ON NDHF - SEQUENCE DATA [J].
CLARK, LG ;
ZHANG, WP ;
WENDEL, JF .
SYSTEMATIC BOTANY, 1995, 20 (04) :436-460
[7]   RATES AND PATTERNS OF CHLOROPLAST DNA EVOLUTION [J].
CLEGG, MT ;
GAUT, BS ;
LEARN, GH ;
MORTON, BR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (15) :6795-6801
[8]  
CRONQUIST A, 1981, INTEGRATED SYSTEM CL
[9]   A COMPREHENSIVE SET OF SEQUENCE-ANALYSIS PROGRAMS FOR THE VAX [J].
DEVEREUX, J ;
HAEBERLI, P ;
SMITHIES, O .
NUCLEIC ACIDS RESEARCH, 1984, 12 (01) :387-395
[10]   PHYLOGENETIC-RELATIONSHIPS OF DIPSACALES BASED ON RBCL SEQUENCES [J].
DONOGHUE, MJ ;
OLMSTEAD, RG ;
SMITH, JF ;
PALMER, JD .
ANNALS OF THE MISSOURI BOTANICAL GARDEN, 1992, 79 (02) :333-345