Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death

被引:28
作者
Butterfield, DA [1 ]
Castegna, A [1 ]
Lauderback, CM [1 ]
Drake, J [1 ]
机构
[1] Univ Kentucky, Dept Chem, Ctr Membrane Sci, Sanders Brown Ctr Aging, Lexington, KY 40506 USA
关键词
amyloid beta-peptide; Alzheimer's disease; APOE;
D O I
暂无
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Amyloid beta-peptide [Abeta(1-42)] is central to the pathogenesis of Alzheimer's disease (AD), and the AD brain is under intense oxidative stress, including membrane lipid peroxidation. Abeta(1-42) causes oxidative stress in and neurotoxicity to neurons in mechanisms that are inhibited by Vitamin E and involve the single methionine residue of this peptide. In particular, Abeta induces lipid peroxidation in ways that are inhibited by free radical antioxidants. Two reactive products of lipid peroxidation are the alkenals, 4-hydroxynonenal (HNE) and 2-propenal (acrolein). These alkenals covalently bind to synaptosomal protein cysteine, histidine, and lysine residues by Michael addition to change protein conformation and function. HNE or acrolein binding to proteins introduces a carbonyl to the protein, making the protein oxidatively modified as a consequence of lipid peroxidation. Immunoprecipitation of proteins from AD and control brain, obtained no longer than 4 h PMI, showed selective proteins are oxidatively modified in the AD brain. Creatine kinase (CK) and beta-actin have increased carbonyl groups, and Glt-1, a glutamate transporter, has increased binding of HNE in AD. Abeta(1-42) addition to synaptosomes also results in HNE binding to Glt-1, thereby coupling increased Abeta(1-42) in AD brain; to increased lipid peroxidation and its sequelae and possibly explaining the mechanism of glutatmate transport inhibition known in AD brain. Ap also inhibits CK. Implications of these findings relate to decreased energy utilization, altered assembly of cytoskeletal proteins, and increased excitotoxicity to neurons by glutamate, all reported for AD. The epsilon-4 allele of the lipid carrier protein apolipoprotein E (APOE) allele is a risk factor for AD. Synaptosomes from APOE knock-out mice are more vulnerable to Abeta-induced oxidative stress (protein oxidation, lipid peroxidation, and ROS generation) than are those from wild-type mice. Further, synaptosomes from allele-specific APOE knock-in mice have tiered vulnerability to Abeta(1-42)-induced oxidative stress, with APOE4 more vulnerable to Abeta(1-42) than are those from APOE2 or APOE3 mice. These results are consistent with the notion of a coupling of the oxidative environment in AD brain and increased risk of developing this disorder. Taken together, the findings from in-vitro studies of lipid peroxidation induced by Abeta(1-42) and postmortem studies of lipid peroxidation (and its sequelae) in AD brain may help explain the APOE allele-related risk for AD, some of the functional and structural alterations in AD brain, and strongly support a causative role of Abeta(1-42)-induced oxidative stress in AD neurodegeneration. Published by Elsevier Science Inc.
引用
收藏
页码:655 / 664
页数:10
相关论文
共 105 条
[31]   BETA-AMYLOID PEPTIDE-DERIVED, OXYGEN-DEPENDENT FREE-RADICALS INHIBIT GLUTAMATE UPTAKE IN CULTURED ASTROCYTES - IMPLICATIONS FOR ALZHEIMERS-DISEASE [J].
HARRIS, ME ;
CARNEY, JM ;
COLE, PS ;
HENSLEY, K ;
HOWARD, BJ ;
MARTIN, L ;
BUMMER, P ;
WANG, YN ;
PEDIGO, NW ;
BUTTERFIELD, DA .
NEUROREPORT, 1995, 6 (14) :1875-1879
[32]  
Harris ME, 1996, J NEUROCHEM, V67, P277
[33]   A MODEL FOR BETA-AMYLOID AGGREGATION AND NEUROTOXICITY BASED ON FREE-RADICAL GENERATION BY THE PEPTIDE - RELEVANCE TO ALZHEIMER-DISEASE [J].
HENSLEY, K ;
CARNEY, JM ;
MATTSON, MP ;
AKSENOVA, M ;
HARRIS, M ;
WU, JF ;
FLOYD, RA ;
BUTTERFIELD, DA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (08) :3270-3274
[34]  
HENSLEY K, 1995, J NEUROCHEM, V65, P2146
[35]   BCL-2 FUNCTIONS IN AN ANTIOXIDANT PATHWAY TO PREVENT APOPTOSIS [J].
HOCKENBERY, DM ;
OLTVAI, ZN ;
YIN, XM ;
MILLIMAN, CL ;
KORSMEYER, SJ .
CELL, 1993, 75 (02) :241-251
[36]  
Jordán J, 1998, J NEUROSCI, V18, P195
[37]   Modulation of amyloid β-protein clearance and Alzheimer's disease susceptibility by the LDL receptor-related protein pathway [J].
Kang, DE ;
Pietrzik, CU ;
Baum, L ;
Chevallier, N ;
Merriam, DE ;
Kounnas, MZ ;
Wagner, SL ;
Troncoso, JC ;
Kawas, CH ;
Katzman, R ;
Koo, EH .
JOURNAL OF CLINICAL INVESTIGATION, 2000, 106 (09) :1159-1166
[38]   Substitution of isoleucine-31 by helical-breaking proline abolishes oxidative stress and neurotoxic properties of Alzheimer's amyloid β-peptide (1-42) [J].
Kanski, J ;
Aksenova, M ;
Schöneich, C ;
Butterfield, DA .
FREE RADICAL BIOLOGY AND MEDICINE, 2002, 32 (11) :1205-1211
[39]   The hydrophobic environment of Met35 of Alzheimer's Aβ(1-42) is important for the neurotoxic and oxidative properties of the peptide [J].
Kanski, Jaroslaw ;
Aksenova, Marina ;
Butterfield, D. Allan .
NEUROTOXICITY RESEARCH, 2002, 4 (03) :219-223
[40]   ADVANCES IN ALZHEIMERS-DISEASE [J].
KATZMAN, R ;
SAITOH, T .
FASEB JOURNAL, 1991, 5 (03) :278-286