共 106 条
Properties and role of Ih in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons
被引:263
作者:
Dickson, CT
Magistretti, J
Shalinsky, MH
Fransén, E
Hasselmo, ME
Alonso, A
机构:
[1] Montreal Neurol Inst, Dept Neurol & Neurosurg, Montreal, PQ H3A 2B4, Canada
[2] Ist Nazl Neurol C Besta, Dept Expt Neurophysiol, I-20133 Milan, Italy
[3] Royal Inst Technol, Dept Numer Anal & Comp Sci, S-10044 Stockholm, Sweden
[4] Boston Univ, Dept Psychol, Boston, MA 02215 USA
[5] McGill Univ, Dept Neurol & Neurosurg, Montreal, PQ H3A 2B4, Canada
关键词:
D O I:
10.1152/jn.2000.83.5.2562
中图分类号:
Q189 [神经科学];
学科分类号:
071006 ;
摘要:
Various subsets of brain neurons express a hyperpolarization-activated inward current (I-h) that has been shown to be instrumental in pacing oscillatory activity at both a single-cell and a network level. A characteristic feature of the stellate cells (SCs) of entorhinal cortex (EC) layer II, those neurons giving rise to the main component of the perforant path input to the hippocampal formation, is their ability to generate persistent, Na+-dependent rhythmic subthreshold membrane potential oscillations, which are thought to be instrumental in implementing theta rhythmicity in the entorhinal-hippocampal network. The SCs also display a robust time-dependent inward rectification in the hyperpolarizing direction that may contribute to the generation of these oscillations. We performed whole cell recordings of SCs in in vitro slices to investigate the specific biophysical and pharmacological properties of the current underlying this inward rectification and to clarify its potential role in the genesis of the subthreshold oscillations. In voltage-clamp conditions, hyperpolarizing voltage steps evoked a slow, noninactivating inward current, which also deactivated slowly on depolarization. This current was identified as I-h because it was resistant to extracellular Ba2+, sensitive to Cs+, completely and selectively abolished by ZD7288, and carried by both Na+ and K+ ions. I-h in the SCs had an activation threshold and reversal potential at approximately -45 and -20 mV, respectively. Its half-activation voltage was -77 mV. Importantly, bath perfusion with ZD7288, but not Ba2+ gradually and completely abolished the subthreshold oscillations, thus directly implicating I-h in their generation. Using experimentally derived biophysical parameters for I-h and the low-threshold persistent Na+ current (I-NaP) present in the SCs, a simplified model of these neurons was constructed and their subthreshold electroresponsiveness simulated. This indicated that the interplay between I-NaP and I-h can sustain persistent subthreshold oscillations in SCs. I-NaP and I-h operate in a "push-pull" fashion where the delay in the activation/deactivation of I-h gives rise to the oscillatory process.
引用
收藏
页码:2562 / 2579
页数:18
相关论文