Mitotic phosphorylation of the dynein light intermediate chain is mediated by cdc2 kinase

被引:42
作者
Dell, KR
Turck, CW
Vale, RD [1 ]
机构
[1] Univ Calif San Francisco, Dept Mol & Cellular Pharmacol, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Howard Hughes Med Inst, San Francisco, CA 94143 USA
关键词
cdc2; kinase; dynein; organelle transport; mitosis; phosphorylation;
D O I
10.1034/j.1600-0854.2000.010107.x
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Cytoplasmic dynein, a large minus-end-directed microtubule motor, performs multiple functions during the cell cycle. In interphase, dynein moves membrane organelIes, while in mitosis it moves chromosomes and helps to form the mitotic spindle. The cell-cycle regulation of dynein activity may be controlled, at least in part, by the phosphorylation of its light intermediate chains (DLIC), since a 10-fold increase in light intermediate chain phosphorylation correlates with a decrease in dynein-based membrane transport of similar magnitude in mitosis. In this study, we sought to identify the kinase responsible for this potentially important phosphorylation event. We show that bacterially-expressed chicken light intermediate chain (chDLIC) will undergo mitosis-specific phosphorylation when added to Xenopus egg extracts. Mutation of a conserved cdc2 kinase consensus site (Ser197) abolishes this phosphorylation event, and mass spectroscopy analysis confirms that the wild-type DLIC is stoichiometrically phosphorylated at this site when incubated with metaphase but not interphase extracts. We also show that purified cdc2 kinase phosphorylates purified DLICs at Ser197 in vitro and that Ser197 phosphorylation is dramatically reduced in metaphase extracts depleted of cdc2 kinase. These results indicate that cdc2 kinase directly phosphorylates dynein and thus may be an important regulator of dynein activity in the cell cycle.
引用
收藏
页码:38 / 44
页数:7
相关论文
共 35 条
[1]   CELL-CYCLE CONTROL OF MICROTUBULE-BASED MEMBRANE-TRANSPORT AND TUBULE FORMATION INVITRO [J].
ALLAN, VJ ;
VALE, RD .
JOURNAL OF CELL BIOLOGY, 1991, 113 (02) :347-359
[2]   Phosphorylation by p34(cdc2) regulates spindle association of human Eg5, a kinesin-related motor essential for bipolar spindle formation in vivo [J].
Blangy, A ;
Lane, HA ;
dHerin, P ;
Harper, M ;
Kress, M ;
Nigg, EA .
CELL, 1995, 83 (07) :1159-1169
[3]   P13SUC1 ACTS IN THE FISSION YEAST-CELL DIVISION CYCLE AS A COMPONENT OF THE P34CDC2 PROTEIN-KINASE [J].
BRIZUELA, L ;
DRAETTA, G ;
BEACH, D .
EMBO JOURNAL, 1987, 6 (11) :3507-3514
[4]   Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution [J].
Burkhardt, JK ;
Echeverri, CJ ;
Nilsson, T ;
Vallee, RB .
JOURNAL OF CELL BIOLOGY, 1997, 139 (02) :469-484
[5]   DIFFERENTIAL PHOSPHORYLATION IN-VIVO OF CYTOPLASMIC DYNEIN ASSOCIATED WITH ANTEROGRADELY MOVING ORGANELLES [J].
DILLMAN, JF ;
PFISTER, KK .
JOURNAL OF CELL BIOLOGY, 1994, 127 (06) :1671-1681
[6]   THE XENOPUS CDC2 PROTEIN IS A COMPONENT OF MPF, A CYTOPLASMIC REGULATOR OF MITOSIS [J].
DUNPHY, WG ;
BRIZUELA, L ;
BEACH, D ;
NEWPORT, J .
CELL, 1988, 54 (03) :423-431
[7]   Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis [J].
Echeverri, CJ ;
Paschal, BM ;
Vaughan, KT ;
Vallee, RB .
JOURNAL OF CELL BIOLOGY, 1996, 132 (04) :617-633
[8]   CYTOPLASMIC DYNEIN IS REQUIRED FOR NORMAL NUCLEAR SEGREGATION IN YEAST [J].
ESHEL, D ;
URRESTARAZU, LA ;
VISSERS, S ;
JAUNIAUX, JC ;
VANVLIETREEDIJK, JC ;
PLANTA, RJ ;
GIBBONS, IR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (23) :11172-11176
[9]   CHARACTERIZATION OF DLC-A AND DLC-B, 2 FAMILIES OF CYTOPLASMIC DYNEIN LIGHT-CHAIN SUBUNITS [J].
GILL, SR ;
CLEVELAND, DW ;
SCHROER, TA .
MOLECULAR BIOLOGY OF THE CELL, 1994, 5 (06) :645-654
[10]   Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein [J].
Harada, A ;
Takei, Y ;
Kanai, Y ;
Tanaka, Y ;
Nonaka, S ;
Hirokawa, N .
JOURNAL OF CELL BIOLOGY, 1998, 141 (01) :51-59