Recent studies in Xenopus have identified a new checkpoint protein called Claspin that is believed to transduce the checkpoint DNA damage signals to Chk1 kinase. Here we show that the human Claspin homolog is a chromatin bound protein either in the absence or in the presence of damaged DNA, independent of its association with ATR. Furthermore, we show that human Claspin is found in complex with PCNA, an essential component of the DNA replication machinery, and is released upon DNA replication arrest. Interfering with PCNA function by overexpression of p21 mutant, impaired in its interaction with Cdks but not with PCNA, leads to ATR-dependent Chk1 activation. These findings suggest that the dissociation of Claspin-PCNA could be part of the signal leading to Chk1 activation. (c) 2007 Elsevier Inc. All rights reserved.
机构:
Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USAWashington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA
Gomes, XV
;
Burgers, PMJ
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USAWashington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA
机构:
Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USAWashington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA
Gomes, XV
;
Burgers, PMJ
论文数: 0引用数: 0
h-index: 0
机构:
Washington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USAWashington Univ, Sch Med, Dept Biochem & Mol Biophys, St Louis, MO 63110 USA