共 39 条
Small heat-shock protein Hsp20 attenuates β-agonist-mediated cardiac remodeling through apoptosis signal-regulating kinase 1
被引:89
作者:
Fan, Guo-Chang
Yuan, Qunying
Song, Guojie
Wang, Yigang
Chen, Guoli
Qian, Jiang
Zhou, Xiaoyang
Lee, Yong J.
Ashraf, Muhammad
Kranias, Evangelia G.
机构:
[1] Univ Cincinnati, Coll Med, Dept Pharmacol & Cell Biophys, Cincinnati, OH 45267 USA
[2] Univ Cincinnati, Coll Med, Dept Pathol & Lab Med, Cincinnati, OH 45267 USA
[3] Univ Pittsburgh, Dept Surg & Pharmacol, Pittsburgh, PA 15260 USA
[4] Acad Athens, Ctr Basic Res, Fdn Biomed Res, Div Mol Biol, GR-10673 Athens, Greece
关键词:
small heat-shock protein Hsp20;
apoptosis;
beta-adrenergic receptor;
apoptosis signal-regulating kinase 1 (ASK1);
D O I:
10.1161/01.RES.0000251074.19348.af
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
Chronic stimulation of the beta-adrenergic neurohormonal axis contributes to the progression of heart failure and mortality in animal models and human patients. In cardiomyocytes, activation of the beta-adrenergic pathway has been shown to result in transiently increased expression of a cardiac small heat-shock protein Hsp20. The present study shows that cardiac overexpression (10-fold) of Hsp20 may protect the heart against beta-agonist-induced cardiac remodeling, associated with isoproterenol (50 mu g/g per day) infusion for 14 days. Hsp20 attenuated the cardiac hypertrophic response, markedly reduced interstitial fibrosis, and decreased apoptosis. Contractility was also preserved in hearts with increased Hsp20 levels. These beneficial effects were associated with attenuation of the ASK1-JNK/p38 (apoptosis signal-regulating kinase 1/c-Jun NH2-terminal kinase/p38) signaling cascade triggered by isoproterenol, whereas there was no difference in either extracellular signal-related kinase 1/2 or Akt activation. Parallel in vitro experiments supported the inhibitory role of Hsp20 on enforced ASK1-JNK/p38 activation in both H9c2 cells and adult rat cardiomyocytes. Immunostaining studies also demonstrated that Hsp20 colocalizes with ASK1 in cardiomyocytes. Taken together, our findings indicate that (1) beta-agonist-induced cardiac injury is associated with activation of the ASK1-JNK/p38 cascade; (2) increased expression of Hsp20 attenuates the induction of remodeling, dysfunction, and apoptosis in response to sustained beta-adrenergic stimulation; and (3) the beneficial effects of Hsp20 are at least partially attributable to inhibition of the ASK1-signaling cascade.
引用
收藏
页码:1233 / 1242
页数:10
相关论文