On the point spectrum of H-2-singular perturbations

被引:9
作者
Albeverio, Sergio
Dudkin, Mykola
Konstantinov, Alexei
Koshmanenko, Volodymyr
机构
[1] Ukrainian Natl Acad, Inst Math, UA-01601 Kiev, Ukraine
[2] Univ Bonn, Inst Angew Math, D-53115 Bonn, Germany
[3] Natl Tech Univ Ukraine, Dept Math, Kiev, Ukraine
[4] Kyiv Univ, Dept Math, UA-01033 Kiev, Ukraine
关键词
singular perturbation; self-adjoint extension; Krein's formula; eigenvalues problem;
D O I
10.1002/mana.200410461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for any self-adjoint operator A in a separable Hilbert space H and a given countable set Lambda={lambda(i)}(i is an element of N) of real numbers, there exist H-2-singular perturbations (A) over tilde of A such that Lambda subset of sigma(p) ((A) over tilde). In particular, if Lambda={lambda(1),...,lambda(n)}is finite, then the operator (A) over tilde solving the eigenvalues problem, (A) over tilde psi(k)=lambda(k)psi(k), k=1,...,n, is uniquely defined by a given set of orthonormal vectors {psi(k)}(k=1)(n) satisfying the condition span {psi(k)}(k=1)(n) boolean AND dom (vertical bar A vertical bar(1/2))={0}. (C) 2007 Wiley-Vch Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:20 / 27
页数:8
相关论文
共 23 条
[1]  
AKHIEZER NI, 1975, THEORIE LINEAREN OPE
[2]   Singular rank one perturbations of self-adjoint operators and Krein theory of self-adjoint extensions [J].
Albeverio, S ;
Koshmanenko, V .
POTENTIAL ANALYSIS, 1999, 11 (03) :279-287
[3]   SQUARE POWERS OF SINGULARLY PERTURBED OPERATORS [J].
ALBEVERIO, S ;
KARWOWSKI, W ;
KOSHMANENKO, V .
MATHEMATISCHE NACHRICHTEN, 1995, 173 :5-24
[4]   On the number of negative eigenvalues of a one-dimensional Schrodinger operator with point interactions [J].
Albeverio, S ;
Nizhnik, L .
LETTERS IN MATHEMATICAL PHYSICS, 2003, 65 (01) :27-35
[5]   Rank-one singular perturbations with a dual pair of eigenvalues [J].
Albeverio, S ;
Dudkin, MA ;
Koshmanenko, V .
LETTERS IN MATHEMATICAL PHYSICS, 2003, 63 (03) :219-228
[6]   On inverse spectral theory for self-adjoint extensions: Mixed types of spectra [J].
Albeverio, S ;
Brasche, J ;
Neidhardt, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1998, 154 (01) :130-173
[7]  
ALBEVERIO S, 2000, SINGULAR PERTURBATIO
[8]  
ALBEVERIO S, 2004, 611 SFB U BONN
[9]  
[Anonymous], 1996, FUNCTIONAL ANAL
[10]  
[Anonymous], SINGULAR QUADRATIC F