Controls on soil nitrogen cycling and microbial community composition across land use and incubation temperature

被引:235
作者
Cookson, W. R.
Osman, M.
Marschner, P.
Abaye, D. A.
Clark, I.
Murphy, D. V.
Stockdale, E. A.
Watson, C. A.
机构
[1] Univ Western Australia, Fac Nat & Agr Sci, Sch Earth & Geograph Sci, Crawley, WA 6009, Australia
[2] Univ Munich, Dept Anim Breeding, D-85354 Freising Weihenstephan, Germany
[3] Univ Adelaide, Fac Sci, Adelaide, SA 5005, Australia
[4] Rothamsted Res, Agr & Environm Div, Harpenden AL5 2JQ, Herts, England
[5] Rothamsted Res, Plant Pathogen Interact Div, Harpenden AL5 2JQ, Herts, England
[6] SAC, Crop & Soil Management Grp, Aberdeen AB21 9YA, Scotland
基金
澳大利亚研究理事会;
关键词
dissolved organic carbon and nitrogen; pH; N-15 pool dilution; DGGE; PLFA; CLPP;
D O I
10.1016/j.soilbio.2006.09.022
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
We conducted a laboratory incubation of forest (Scots pine (Pinus sylvestris) or beech (Fagus sylvatica)), grassland (Trifolium repens Lolium perenne) and arable (organic and conventional) soils at 5 and 25 degrees C. We aimed to clarify the mechanisms of short-term (2-weeks) nitrogen (N) cycling processes and microbial community composition in relation to dissolved organic carbon (DOC) and N (DON) availability and selected soil properties. N cycling was measured by 15 N pool dilution and microbial community composition by denaturing gradient gel electrophoresis (DGGE), phospholipid fatty acid (PLFA) and community level physiological profiles (CLPP). Soil DOC increased in the order of arable < grassland < forest soil while DON and gross N fluxes increased in the order of forest < arable < grassland soil; land use had no affect on respiration rate. Soil DOC was lower, while respiration, DON and gross N fluxes were higher at 25 than 5 degrees C. Gross N fluxes, respiration and bacterial biomass were all positively correlated with each other. Gross N fluxes were positively correlated with pH and DON, and negatively correlated with organic matter, fungal biomass, DOC and DOC/ DON ratio. Respiration rate was positively correlated with bacterial biomass, DON and DOC/DON ratio. Multiple linear modelling indicated that soil pH, organic matter, bacterial biomass, DON and DOC/DON ratio were important in predicting gross N mineralization. Incubation temperature, pH and total-C were important in predicting gross nitrification, while gross N mineralization, gross nitrification and pH were important in predicting gross N immobilization. Permutation multivariate analysis of variance indicated that DGGE, CLPP and PLFA profiles were all significantly (P < 0.05) affected by land use and incubation temperature. Multivariate regressions indicated that incubation temperature, pH and organic matter content were important in predicting DGGE, CLPP and PLFA profiles. PLFA and CLPP were also related to DON, DOC, ammonium and nitrate contents. Canonical correlation analysis showed that PLFA and CLPP were related to differences in the rates of gross N mineralization, gross nitrification and soil respiration. Our study indicates that vegetation type and/or management practices which control soil pH and mediate dissolved organic matter availability were important predictors of gross N fluxes and microbial composition in this short-term experiment. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:744 / 756
页数:13
相关论文
共 48 条
[1]  
Anderson MJ, 2003, ECOLOGY, V84, P511, DOI 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO
[2]  
2
[3]   Permutation tests for univariate or multivariate analysis of variance and regression [J].
Anderson, MJ .
CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES, 2001, 58 (03) :626-639
[4]   A new method for non-parametric multivariate analysis of variance [J].
Anderson, MJ .
AUSTRAL ECOLOGY, 2001, 26 (01) :32-46
[5]   Influence of pH and temperature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus [J].
Andersson, S ;
Nilsson, SI .
SOIL BIOLOGY & BIOCHEMISTRY, 2001, 33 (09) :1181-1191
[6]   Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH [J].
Andersson, S ;
Nilsson, SI ;
Saetre, P .
SOIL BIOLOGY & BIOCHEMISTRY, 2000, 32 (01) :1-10
[7]   MICROBIAL COMMUNITY STRUCTURE AND PH RESPONSE IN RELATION TO SOIL ORGANIC-MATTER QUALITY IN WOOD-ASH FERTILIZED, CLEAR-CUT OR BURNED CONIFEROUS FOREST SOILS [J].
BAATH, E ;
FROSTEGARD, A ;
PENNANEN, T ;
FRITZE, H .
SOIL BIOLOGY & BIOCHEMISTRY, 1995, 27 (02) :229-240
[8]  
Bardgett R, 2005, BIOL SOIL COMMUNITY, DOI DOI 10.1093/ACPROF:OSO/9780198525035.001.0001
[9]   DETERMINATION OF ORGANIC-MATTER CONTENT IN ARID-ZONE SOILS USING A SIMPLE LOSS-ON-IGNITION METHOD [J].
BENDOR, E ;
BANIN, A .
COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 1989, 20 (15-16) :1675-1695
[10]   CHARACTERIZATION OF BENTHIC MICROBIAL COMMUNITY STRUCTURE BY HIGH-RESOLUTION GAS-CHROMATOGRAPHY OF FATTY-ACID METHYL-ESTERS [J].
BOBBIE, RJ ;
WHITE, DC .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1980, 39 (06) :1212-1222