On strongly degenerate convection-diffusion problems modeling sedimentation-consolidation processes

被引:52
作者
Bürger, R
Evje, S
Karlsen, KH
机构
[1] Univ Stuttgart, Inst Math A, D-70569 Stuttgart, Germany
[2] RF Rogeland Res, N-5008 Bergen, Norway
[3] Univ Bergen, Dept Math, N-5008 Bergen, Norway
关键词
degenerate convection-diffusion equation; entropy solutions; discontinuous diffusion coefficient; sedimentation-consolidation processes; BV solutions;
D O I
10.1006/jmaa.2000.6872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate initial-boundary value problems for a quasilinear strongly degenerate convection-diffusion equation with a discontinuous diffusion coefficient. These problems come from the mathematical modeling of certain sedimentation-consolidation processes. The existence of entropy solutions belonging to BY is shown by the vanishing viscosity method. The existence proof for one of the models includes a new regularity result for the integrated diffusion coefficient. New uniqueness proofs for entropy solutions are also presented. These proofs rely on a recent extension to second-order equations of Kruzkov's method of "doubling the variables." The application to a sedimentation-consolidation model is illustrated by two numerical examples. (C) 2000 Academic Press.
引用
收藏
页码:517 / 556
页数:40
相关论文
共 25 条
[1]  
ALT HW, 1983, MATH Z, V183, P311
[2]  
[Anonymous], 1970, MATH USSR SB
[3]  
Bardos C., 1979, COMMUN PART DIFF EQ, V4, P1017, DOI DOI 10.1080/03605307908820117
[4]   Mathematical model and numerical simulation of the settling of flocculated suspensions [J].
Burger, R ;
Concha, F .
INTERNATIONAL JOURNAL OF MULTIPHASE FLOW, 1998, 24 (06) :1005-1023
[5]  
Burger R, 1998, MATH METHOD APPL SCI, V21, P865
[6]   Existence, uniqueness, and stability of generalized solutions of an initial-boundary value problem for a degenerating quasilinear parabolic equation [J].
Burger, R ;
Wendland, WL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 218 (01) :207-239
[7]  
Bürger R, 2000, Z ANGEW MATH MECH, V80, P79
[8]  
BURGER R, IN PRESS SEPAR PURIF
[9]  
BURGER R, UNPUB STRONGLY DEGEN
[10]  
Bustos M.C., 1999, Sedimentation and Thickening Phenomenological Foundation and Mathematical Theory, DOI [10.1007/978-94-015-9327-4, DOI 10.1007/978-94-015-9327-4]