Statistical estimation of parameters in a disease transmission model:: analysis of a Cryptosporidium outbreak

被引:24
作者
Brookhart, MA
Hubbard, AE
van der Laan, MJ
Colford, JM
Eisenberg, JNS
机构
[1] Univ Calif Berkeley, Sch Publ Hlth, Div Biostat, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Div Publ Hlth Biol & Epidemiol, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Div Epidemiol, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Div Epidemiol & Environm Hlth Sci, Berkeley, CA 94720 USA
关键词
mathematical model; profile likelihood; disease transmission; Cryptosporidium; outbreak;
D O I
10.1002/sim.1258
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Population dynamic models, commonly used tools in the study of epidemics and other complex population processes, are implicit non-linear mathematical equations. Inference based on such models can be difficult due to the problems associated with high dimensional parameters that may be non-identified and complex likelihood functions that are difficult to maximize. To address a problem of non-identifiability due to collinearity of parameter estimates in a mathematical model of the 1993 Milwaukee Cryptosporidium parvum outbreak, we examined the utility of a constrained profile likelihood approach. This method was used to study two parameters of interest from the mathematical model: (i) the rate of secondary transmission; (ii) the proportional increase in primary transmission due to water treatment failure. The estimated values of these parameters were shown to depend strongly on poorly understood aspects of Cryptosporidium epidemiology such as asymptomatic proportion and the population immune status. Our analysis demonstrated that the combination of a disease transmission model and a constrained profile likelihood procedure provides an effective approach for inference and estimation of important parameters regulating infectious disease outbreaks. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:3627 / 3638
页数:12
相关论文
共 22 条
[1]  
ANDERSON R M, 1991
[2]  
Burden R. L., 2011, NUMERICAL ANAL, V9th
[3]   Bayesian analysis of an epidemiologic model of Plasmodium falciparum malaria infection in Ndiop, Senegal [J].
Cancré, N ;
Tall, A ;
Rogier, C ;
Faye, J ;
Sarr, O ;
Trape, JF ;
Spiegel, A ;
Bois, F .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2000, 152 (08) :760-770
[4]   Cryptosporidium parvum: Intensity of infection and oocyst excretion patterns in healthy volunteers [J].
Chappell, CL ;
Okhuysen, PC ;
Sterling, CR ;
DuPont, HL .
JOURNAL OF INFECTIOUS DISEASES, 1996, 173 (01) :232-236
[5]   Infectivity of Cryptosporidium parvum in healthy adults with pre-existing anti-C.: Parvum serum immunoglobulin G [J].
Chappell, CL ;
Okhuysen, PC ;
Sterling, CR ;
Wang, C ;
Jakubowski, W ;
Dupont, HL .
AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 1999, 60 (01) :157-164
[6]  
Deguen S, 2000, STAT MED, V19, P1207, DOI 10.1002/(SICI)1097-0258(20000515)19:9&lt
[7]  
1207::AID-SIM423&gt
[8]  
3.0.CO
[9]  
2-L
[10]   DYNAMIC-MODEL COMPARING THE BIONOMICS OF 2 ISOLATED CULEX-TARSALIS (DIPTERA, CULICIDAE) POPULATIONS - SENSITIVITY ANALYSIS [J].
EISENBERG, JN ;
REISEN, WK ;
SPEAR, RC .
JOURNAL OF MEDICAL ENTOMOLOGY, 1995, 32 (02) :98-106