Amyloid-forming peptides from β2-microglobulin -: Insights into the mechanism of fibril formation in vitro

被引:132
作者
Jones, S [1 ]
Manning, J [1 ]
Kad, NM [1 ]
Radford, SE [1 ]
机构
[1] Univ Leeds, Sch Biochem & Mol Biol, Leeds LS2 9JT, W Yorkshire, England
基金
英国生物技术与生命科学研究理事会;
关键词
peptides; amyloid-like fibrils; lag phase; beta(2)-microglobulin; haemodialysis-related amyloidosis;
D O I
10.1016/S0022-2836(02)01227-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
beta(2)-Microglobulin (beta(2)m) is one of over 20 proteins known to be involved in human amyloid disease. Peptides equivalent to each of the seven beta-strands of the native protein, together with an eighth peptide (corresponding to the most stable region in the amyloid precursor conformation formed at pH 3.6, that includes residues in the native strand E plus the eight succeeding residues (named peptide E')), were synthesised and their ability to form fibrils investigated. Surprisingly, only two sequences, both of which encompass the region that forms strand E in native beta(2)m, are capable of forming amyloid-like fibrils in vitro. These peptides correspond to residues 59-71 (peptide E) and 59-79 (peptide E') of intact beta(2)m. The peptides form fibrils under the acidic conditions shown previously to promote amyloid formation from the intact protein (pH < 5 at low and high ionic strength), and also associate to form fibrils at neutral pH. Fibrils formed from these two peptides enhance fibrillogenesis of the intact protein. No correlation was found between secondary structure propensity, peptide length, pI or hydrophobicity and the ability of the peptides to associate into amyloid-like fibrils. However, the presence of a relatively high content of aromatic side-chains correlates with the ability of the peptides to form amyloid fibrils. On the basis of these results we propose that residues 59-71 may be important in the self-association of partially folded beta(2)m into amyloid fibrils and discuss the relevance of these results for the assembly mechanism of the intact protein in vitro. (C) 2003 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:249 / 257
页数:9
相关论文
共 51 条
[1]   Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes [J].
Aggeli, A ;
Bell, M ;
Boden, N ;
Keen, JN ;
Knowles, PF ;
McLeish, TCB ;
Pitkeathly, M ;
Radford, SE .
NATURE, 1997, 386 (6622) :259-262
[2]   Analysis of the structural and functional elements of the minimal active fragment of islet amyloid polypeptide (IAPP) - An experimental support for the key role of the phenylalanine residue in amyloid formation [J].
Azriel, R ;
Gazit, E .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (36) :34156-34161
[3]   An amyloid-forming peptide from the yeast prion Sup35 reveals a dehydrated β-sheet structure for amyloid [J].
Balbirnie, M ;
Grothe, R ;
Eisenberg, DS .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2375-2380
[4]   β2-microglobulin can be refolded into a native state from ex vivo amyloid fibrils [J].
Bellotti, V ;
Stoppini, M ;
Mangione, P ;
Sunde, M ;
Robinson, C ;
Asti, L ;
Brancaccio, D ;
Ferri, G .
EUROPEAN JOURNAL OF BIOCHEMISTRY, 1998, 258 (01) :61-67
[5]   Nature disfavors sequences of alternating polar and non-polar amino acids: Implications for amyloidogenesis [J].
Broome, BM ;
Hecht, MH .
JOURNAL OF MOLECULAR BIOLOGY, 2000, 296 (04) :961-968
[6]   Species-independent inhibition of abnormal prion protein (PrP) formation by a peptide containing a conserved PrP sequence [J].
Chabry, J ;
Priola, SA ;
Wehrly, K ;
Nishio, J ;
Hope, J ;
Chesebro, B .
JOURNAL OF VIROLOGY, 1999, 73 (08) :6245-6250
[7]   Conformational diversity in a yeast prion dictates its seeding specificity [J].
Chien, P ;
Weissman, JS .
NATURE, 2001, 410 (6825) :223-227
[8]   A partially structured species of β2-microglobulin is significantly populated under physiological conditions and involved in fibrillogenesis [J].
Chiti, F ;
De Lorenzi, E ;
Grossi, S ;
Mangione, P ;
Giorgetti, S ;
Caccialanza, G ;
Dobson, CM ;
Merlini, G ;
Ramponi, G ;
Bellotti, V .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (50) :46714-46721
[9]  
CHITI F, 2002, IN PRESS P NATL ACAD
[10]   EMPIRICAL PREDICTIONS OF PROTEIN CONFORMATION [J].
CHOU, PY ;
FASMAN, GD .
ANNUAL REVIEW OF BIOCHEMISTRY, 1978, 47 :251-276