Lack of SeqA focus formation, specific DNA binding and proper protein multimerization in the Escherichia coli sequestration mutant seqA2

被引:23
作者
Fossum, S [1 ]
Soreide, S [1 ]
Skarstad, K [1 ]
机构
[1] Inst Canc Res, Dept Cell Biol, N-0310 Oslo, Norway
关键词
D O I
10.1046/j.1365-2958.2003.t01-1-03329.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In Escherichia coli wild-type cells newly formed origins cannot be reinitiated. The prevention of reinitiation is termed sequestration and is dependent on the hemimethylated state of newly replicated DNA. Several mutants discovered in a screen for the inability to sequester hemimethylated origins have been mapped to the seqA gene. Here, one of these mutants, seqA2, harbouring a single amino acid change in the C-terminal end of the SeqA protein, was found to also be unable to form foci in vivo. The SeqA foci seen in the wild-type cells are believed to arise from multimerization of SeqA on hemimethylated DNA at the replication fork, presumably representing organization of newly formed DNA by SeqA. The result suggests that the process of origin sequestration is closely tied to the process of focus maintenance at the replication fork. In vitro, purified SeqA2 protein was found incapable of forming highly ordered multimers that bind hemimethylated oriC. The mutant protein was also incapable of restraining negative supercoils. Both in vivo and in vitro results support the idea that origin sequestration is an integral part of organization of newly formed DNA performed by SeqA.
引用
收藏
页码:619 / 632
页数:14
相关论文
共 50 条
[1]  
BACH T, 2003, IN PRESS EMBO J, V22
[2]   Co-ordination between membrane oriC sequestration factors and a chromosome partitioning protein, TolC (MukA) [J].
Bahloul, A ;
Meury, J ;
Kern, R ;
Garwood, J ;
Guha, S ;
Kohiyama, M .
MOLECULAR MICROBIOLOGY, 1996, 22 (02) :275-282
[3]   EXTENSIVE UNWINDING OF THE PLASMID TEMPLATE DURING STAGED ENZYMATIC INITIATION OF DNA-REPLICATION FROM THE ORIGIN OF THE ESCHERICHIA-COLI CHROMOSOME [J].
BAKER, TA ;
SEKIMIZU, K ;
FUNNELL, BE ;
KORNBERG, A .
CELL, 1986, 45 (01) :53-64
[4]   TRANSCRIPTIONAL ACTIVATION OF INITIATION OF REPLICATION FROM THE ESCHERICHIA-COLI CHROMOSOMAL ORIGIN - AN RNA-DNA HYBRID NEAR ORIC [J].
BAKER, TA ;
KORNBERG, A .
CELL, 1988, 55 (01) :113-123
[5]   Coordinating DNA replication initiation with cell growth: Differential roles for DnaA and SeqA proteins [J].
Boye, E ;
Stokke, T ;
Kleckner, N ;
Skarstad, K .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (22) :12206-12211
[6]   Limiting DNA replication to once and only once [J].
Boye, E ;
Lobner-Olesen, A ;
Skarstad, K .
EMBO REPORTS, 2000, 1 (06) :479-483
[7]   DUPLEX OPENING BY DNAA PROTEIN AT NOVEL SEQUENCES IN INITIATION OF REPLICATION AT THE ORIGIN OF THE ESCHERICHIA-COLI CHROMOSOME [J].
BRAMHILL, D ;
KORNBERG, A .
CELL, 1988, 52 (05) :743-755
[8]   A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation [J].
Brendler, T ;
Sawitzke, J ;
Sergueev, K ;
Austin, S .
EMBO JOURNAL, 2000, 19 (22) :6249-6258
[9]   A PROTEIN THAT BINDS TO THE P1 ORIGIN CORE AND THE ORIC 13MER REGION IN A METHYLATION-SPECIFIC FASHION IS THE PRODUCT OF THE HOST SEQA GENE [J].
BRENDLER, T ;
ABELES, A ;
AUSTIN, S .
EMBO JOURNAL, 1995, 14 (16) :4083-4089
[10]   Binding of SeqA protein to DNA requires interaction between two or more complexes bound to separate hemimethylated GATC sequences [J].
Brendler, T ;
Austin, S .
EMBO JOURNAL, 1999, 18 (08) :2304-2310