Control of the new 4th-order hyper-chaotic system with one input

被引:11
作者
Loria, Antonio [1 ]
机构
[1] LSS SUPELEC, CNRS, F-91192 Gif Sur Yvette, France
关键词
Lu system; Lorenz system; Chaos control; Lyapunov method; NONLINEAR CONTROL; SYNCHRONIZATION; ATTRACTOR; EQUATION; LORENZ;
D O I
10.1016/j.cnsns.2009.06.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We solve the problem of chaos Suppression of Lu's hyper-chaotic system via feedback control. We use only one control input and moreover the controller is a simple proportional feedback and uses the measurement of only one variable. We show that this simple control law suffices to stabilize the hyper-chaotic system to the zero equilibrium globally and asymptotically. We present stability proofs based on Lyapunov's direct method and integration of solutions. As a corollary of our main result we draw the Conclusion that the system is globally stabilizable by simply varying One parameter, when possible. Simulation experiments that show the effectiveness Of Our method are also presented. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1621 / 1630
页数:10
相关论文
共 17 条
  • [1] AYATI M, 2008, CHAOS SOLIT FRACT
  • [2] Controlling chaos of the family of Rossler systems using sliding mode control
    Chang, Jen-Fuh
    Hung, Meei-Ling
    Yang, Yi-Sung
    Liao, Teh-Lu
    Yan, Jun-Juh
    [J]. CHAOS SOLITONS & FRACTALS, 2008, 37 (02) : 609 - 622
  • [3] Yet another chaotic attractor
    Chen, GR
    Ueta, T
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (07): : 1465 - 1466
  • [4] Chaos control and global synchronization of Liu chaotic systems using linear balanced feedback control
    Chen, Heng-Hui
    [J]. CHAOS SOLITONS & FRACTALS, 2009, 40 (01) : 466 - 473
  • [5] Controlling hyperchaos in the new hyperchaotic system
    Dou, Fu-quan
    Sun, Han-an
    Duan, Wen-shan
    Lue, Ke-pu
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (02) : 552 - 559
  • [6] GOHARRIZI AY, 2008, OBSERVER BASED ADAPT
  • [7] Connecting the Lorenz and Chen systems via nonlinear control
    Li, Dequan
    Yin, Zhixiang
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (03) : 655 - 667
  • [8] LORENZ EN, 1963, J ATMOS SCI, V20, P130, DOI 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO
  • [9] 2
  • [10] A new chaotic system and beyond:: The generalized Lorenz-like system
    Lü, JH
    Chen, GR
    Cheng, DZ
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (05): : 1507 - 1537