Parentage in natural populations: novel methods to detect parent-offspring pairs in large data sets

被引:60
作者
Christie, Mark R. [1 ]
机构
[1] Oregon State Univ, Dept Zool, Corvallis, OR 97331 USA
基金
美国国家科学基金会;
关键词
Bayes' theorem; dispersal; exclusion; gene-flow; genotyping error; parent-offspring pairs; paternity; LONG-DISTANCE DISPERSAL; GENOTYPING ERRORS; GENE FLOW; PATERNITY INFERENCE; ASSIGNMENT; IDENTIFICATION; RELATEDNESS; SPECIATION; SUCCESS; FITNESS;
D O I
10.1111/j.1755-0998.2009.02687.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Parentage analysis in natural populations presents a valuable yet unique challenge because of large numbers of pairwise comparisons, marker set limitations and few sampled true parent-offspring pairs. These limitations can result in the incorrect assignment of false parent-offspring pairs that share alleles across multi-locus genotypes by chance alone. I first define a probability, Pr(delta), to estimate the expected number of false parent-offspring pairs within a data set. This probability can be used to determine whether one can accept all putative parent-offspring pairs with strict exclusion. I next define the probability Pr(phi|lambda), which employs Bayes' theorem to determine the probability of a putative parent-offspring pair being false given the frequencies of shared alleles. This probability can be used to separate true parent-offspring pairs from false pairs that occur by chance when a data set lacks sufficient numbers of loci to accept all putative parent-offspring pairs. Finally, I propose a method to quantitatively determine how many loci to let mismatch for study-specific error rates and demonstrate that few data sets should need to allow more than two loci to mismatch. I test all theoretical predictions with simulated data and find that, first, Pr(delta) and Pr(phi|lambda) have very low bias, and second, that power increases with lower sample sizes, uniform allele frequency distributions, and higher numbers of loci and alleles per locus. Comparisons of Pr(phi|lambda) to strict exclusion and CERVUS demonstrate that this method may be most appropriate for large natural populations when supplemental data (e.g. genealogies, candidate parents) are absent.
引用
收藏
页码:115 / 128
页数:14
相关论文
共 49 条
[1]   A maximum-likelihood method for the estimation of pairwise relatedness in structured populations [J].
Anderson, Amy D. ;
Weir, Bruce S. .
GENETICS, 2007, 176 (01) :421-440
[2]   The power of single-nucleotide polymorphisms for large-scale parentage inference [J].
Anderson, EC ;
Garza, JC .
GENETICS, 2006, 172 (04) :2567-2582
[3]  
[Anonymous], R LANG ENV STAT COMP
[4]   Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild [J].
Araki, Hitoshi ;
Cooper, Becky ;
Blouin, Michael S. .
SCIENCE, 2007, 318 (5847) :100-103
[5]  
Bernatchez L, 2000, CAN J FISH AQUAT SCI, V57, P1, DOI 10.1139/cjfas-57-1-1
[6]   DNA-based methods for pedigree reconstruction and kinship analysis in natural populations [J].
Blouin, MS .
TRENDS IN ECOLOGY & EVOLUTION, 2003, 18 (10) :503-511
[7]   How to track and assess genotyping errors in population genetics studies [J].
Bonin, A ;
Bellemain, E ;
Eidesen, PB ;
Pompanon, F ;
Brochmann, C ;
Taberlet, P .
MOLECULAR ECOLOGY, 2004, 13 (11) :3261-3273
[8]  
Carlin BP, 2000, C&H TEXT STAT SCI
[9]  
CHAKRABORTY R, 1988, GENETICS, V118, P527
[10]   Phylogeography of the Rhabditis (Pellioditis) marina species complex:: evidence for long-distance dispersal, and for range expansions and restricted gene flow in the northeast Atlantic [J].
Derycke, S. ;
Remerie, T. ;
Backeljau, T. ;
Vierstraete, A. ;
Vanfleteren, J. ;
Vincx, M. ;
Moens, T. .
MOLECULAR ECOLOGY, 2008, 17 (14) :3306-3322