Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis

被引:627
作者
Wang, Huachun
Ngwenyama, Njabulo
Liu, Yidong
Walker, John C.
Zhang, Shuqun [1 ]
机构
[1] Univ Missouri, Dept Biochem, Columbia, MO 65211 USA
[2] Univ Missouri, Div Biol Sci, Columbia, MO 65211 USA
[3] Univ Missouri, Bond Life Sci Ctr, Columbia, MO 65211 USA
关键词
D O I
10.1105/tpc.106.048298
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Stomata are specialized epidermal structures that regulate gas (CO2 and O-2) and water vapor exchange between plants and their environment. In Arabidopsis thaliana, stomatal development is preceded by asymmetric cell divisions, and stomatal distribution follows the one-cell spacing rule, reflecting the coordination of cell fate specification. Stomatal development and patterning are regulated by both genetic and environmental signals. Here, we report that Arabidopsis MITOGEN-ACTIVATED PROTEIN KINASE3 (MPK3) and MPK6, two environmentally responsive mitogen-activated protein kinases (MAPKs), and their upstream MAPK kinases, MKK4 and MKK5, are key regulators of stomatal development and patterning. Loss of function of MKK4/MKK5 or MPK3/MPK6 disrupts the coordinated cell fate specification of stomata versus pavement cells, resulting in the formation of clustered stomata. Conversely, activation of MKK4/MKK5-MPK3/MPK6 causes the suppression of asymmetric cell divisions and stomatal cell fate specification, resulting in a lack of stomatal differentiation. We further establish that the MKK4/MKK5-MPK3/MPK6 module is downstream of YODA,a MAPKKK. The establishment of a complete MAPK signaling cascade as a key regulator of stomatal development and patterning advances our understanding of the regulatory mechanisms of intercellular signaling events that coordinate cell fate specification during stomatal development.
引用
收藏
页码:63 / 73
页数:11
相关论文
共 39 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]  
[Anonymous], 2002, ARABIDOPSIS BOOK
[3]   A glucocorticoid-mediated transcriptional induction system in transgenic plants [J].
Aoyama, T ;
Chua, NH .
PLANT JOURNAL, 1997, 11 (03) :605-612
[4]   MAP kinase signalling cascade in Arabidopsis innate immunity [J].
Asai, T ;
Tena, G ;
Plotnikova, J ;
Willmann, MR ;
Chiu, WL ;
Gomez-Gomez, L ;
Boller, T ;
Ausubel, FM ;
Sheen, J .
NATURE, 2002, 415 (6875) :977-983
[5]  
Berger D, 2000, GENE DEV, V14, P1119
[6]   Stomatal development and pattern controlled by a MAPKK kinase [J].
Bergmann, DC ;
Lukowitz, W ;
Somerville, CR .
SCIENCE, 2004, 304 (5676) :1494-1497
[7]   Integrating signals in stomatal development [J].
Bergmann, DC .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (01) :26-32
[8]   The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root [J].
DiLaurenzio, L ;
WysockaDiller, J ;
Malamy, JE ;
Pysh, L ;
Helariutta, Y ;
Freshour, G ;
Hahn, MG ;
Feldmann, KA ;
Benfey, PN .
CELL, 1996, 86 (03) :423-433
[9]   Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the too many mouths mutation [J].
Geisler, M ;
Nadeau, J ;
Sack, FD .
PLANT CELL, 2000, 12 (11) :2075-2086
[10]   Ultraviolet-B effects on stomatal density, water-use efficiency, and stable carbon isotope discrimination in four glasshouse-grown soybean (Glyicine max) cultivars [J].
Gitz, DC ;
Liu-Gitz, L ;
Britz, SJ ;
Sullivan, JH .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2005, 53 (03) :343-355